IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipcs0960148124019359.html

A comparative study on the performance of ice-source heat pumps versus other heat source heat pumps: A case study in the UK

Author

Listed:
  • Mehdipour, Ramin
  • Garvey, Seamus
  • Baniamerian, Zahra
  • Cardenas, Bruno

Abstract

Eliminating natural gas as a fuel for heating residential and industrial units is crucial for reducing environmental pollutants. The challenge lies in finding alternative heating systems and repurposing existing infrastructures, like gas pipes. This article presents a new approach to supplying energy to heat pumps in a post-natural gas era using repurposed gas pipes to transport water for ice-source heat pumps. It highlights the advantages of ice-source heat pumps and compares their thermal performance with other types. The proposed system integrates ice-source and geothermal heat pumps, offering space efficiency, compact design, cost-effective centralization, optimized subsidies, seasonal cooling, weather resilience, and eliminates the need for new piping.

Suggested Citation

  • Mehdipour, Ramin & Garvey, Seamus & Baniamerian, Zahra & Cardenas, Bruno, 2024. "A comparative study on the performance of ice-source heat pumps versus other heat source heat pumps: A case study in the UK," Renewable Energy, Elsevier, vol. 237(PC).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124019359
    DOI: 10.1016/j.renene.2024.121867
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124019359
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121867?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Lian & Tai, Nengling & Fan, Chunju & Meng, Yuanye, 2016. "Energy regulating and fluctuation stabilizing by air source heat pump and battery energy storage system in microgrid," Renewable Energy, Elsevier, vol. 95(C), pages 202-212.
    2. Greening, Benjamin & Azapagic, Adisa, 2012. "Domestic heat pumps: Life cycle environmental impacts and potential implications for the UK," Energy, Elsevier, vol. 39(1), pages 205-217.
    3. Bordignon, Sara & Spitler, Jeffrey D. & Zarrella, Angelo, 2024. "Simplified water-source heat pump models for predicting heat extraction and rejection," Renewable Energy, Elsevier, vol. 220(C).
    4. Antonijevic, Dragi & Komatina, Mirko, 2011. "Sustainable sub-geothermal heat pump heating in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3534-3538.
    5. Pashchenko, Dmitry & Mustafin, Ravil & Karpilov, Igor, 2022. "Ammonia-fired chemically recuperated gas turbine: Thermodynamic analysis of cycle and recuperation system," Energy, Elsevier, vol. 252(C).
    6. Lund, Rasmus & Persson, Urban, 2016. "Mapping of potential heat sources for heat pumps for district heating in Denmark," Energy, Elsevier, vol. 110(C), pages 129-138.
    7. Ni, Long & Dong, Jiankai & Yao, Yang & Shen, Chao & Qv, Dehu & Zhang, Xuedan, 2015. "A review of heat pump systems for heating and cooling of buildings in China in the last decade," Renewable Energy, Elsevier, vol. 84(C), pages 30-45.
    8. Zhang, Feng & Cai, Jingyong & Ji, Jie & Han, Kedong & Ke, Wei, 2020. "Experimental investigation on the heating and cooling performance of a solar air composite heat source heat pump," Renewable Energy, Elsevier, vol. 161(C), pages 221-229.
    9. Mehdipour, Ramin & Garvey, Seamus & Baniamerian, Zahra & Cardenas, Bruno, 2024. "Ice source heat pump system for energy supply via gas pipelines – Part1: Performance analysis in residential units," Energy, Elsevier, vol. 309(C).
    10. Wang, Y. & Wang, J. & He, W., 2022. "Development of efficient, flexible and affordable heat pumps for supporting heat and power decarbonisation in the UK and beyond: Review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehdipour, Ramin & Garvey, Seamus & Baniamerian, Zahra & Cardenas, Bruno, 2024. "Ice source heat pump system for energy supply via gas pipelines – Part1: Performance analysis in residential units," Energy, Elsevier, vol. 309(C).
    2. Xiaoyang Hou & Shuai Zhong & Jian’an Zhao, 2022. "A Critical Review on Decarbonizing Heating in China: Pathway Exploration for Technology with Multi-Sector Applications," Energies, MDPI, vol. 15(3), pages 1-23, February.
    3. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
    4. Gaudard, Adrien & Wüest, Alfred & Schmid, Martin, 2019. "Using lakes and rivers for extraction and disposal of heat: Estimate of regional potentials," Renewable Energy, Elsevier, vol. 134(C), pages 330-342.
    5. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    6. Zhang, Ruirui & Wang, Guiling & Shen, Xiaoxu & Wang, Jinfeng & Tan, Xianfeng & Feng, Shoutao & Hong, Jinglan, 2020. "Is geothermal heating environmentally superior than coal fired heating in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    7. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    8. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng & Li, Yunhai, 2023. "Mathematical and experimental investigation about the dual-source heat pump integrating low concentrated photovoltaic and finned-tube exchanger," Energy, Elsevier, vol. 263(PE).
    9. Song, Zhiying & Zhang, Yuzhe & Tang, Yayun & Ji, Jie, 2025. "Experimental and theoretical analysis of a dual-source heat pump system with PVT assistance and adaptive combined throttling regulation for summer applications," Applied Energy, Elsevier, vol. 397(C).
    10. Andreas Müller & Marcus Hummel & Lukas Kranzl & Mostafa Fallahnejad & Richard Büchele, 2019. "Open Source Data for Gross Floor Area and Heat Demand Density on the Hectare Level for EU 28," Energies, MDPI, vol. 12(24), pages 1-25, December.
    11. Emmanuel Hernández-Mayoral & Manuel Madrigal-Martínez & Jesús D. Mina-Antonio & Reynaldo Iracheta-Cortez & Jesús A. Enríquez-Santiago & Omar Rodríguez-Rivera & Gregorio Martínez-Reyes & Edwin Mendoza-, 2023. "A Comprehensive Review on Power-Quality Issues, Optimization Techniques, and Control Strategies of Microgrid Based on Renewable Energy Sources," Sustainability, MDPI, vol. 15(12), pages 1-53, June.
    12. Hemmatabady, Hoofar & Welsch, Bastian & Formhals, Julian & Sass, Ingo, 2022. "AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling," Applied Energy, Elsevier, vol. 311(C).
    13. Morini, Mirko & Pinelli, Michele & Spina, Pier Ruggero & Venturini, Mauro, 2013. "Optimal allocation of thermal, electric and cooling loads among generation technologies in household applications," Applied Energy, Elsevier, vol. 112(C), pages 205-214.
    14. Li, Xiang & Yilmaz, Selin & Patel, Martin K. & Chambers, Jonathan, 2023. "Techno-economic analysis of fifth-generation district heating and cooling combined with seasonal borehole thermal energy storage," Energy, Elsevier, vol. 285(C).
    15. Ferahtia, Seydali & Houari, Azeddine & Cioara, Tudor & Bouznit, Mohammed & Rezk, Hegazy & Djerioui, Ali, 2024. "Recent advances on energy management and control of direct current microgrid for smart cities and industry: A Survey," Applied Energy, Elsevier, vol. 368(C).
    16. Gemina Quest & Rosalie Arendt & Christian Klemm & Vanessa Bach & Janik Budde & Peter Vennemann & Matthias Finkbeiner, 2022. "Integrated Life Cycle Assessment (LCA) of Power and Heat Supply for a Neighborhood: A Case Study of Herne, Germany," Energies, MDPI, vol. 15(16), pages 1-21, August.
    17. Rämä, Miika & Wahlroos, Mikko, 2018. "Introduction of new decentralised renewable heat supply in an existing district heating system," Energy, Elsevier, vol. 154(C), pages 68-79.
    18. Pan, Ting & Ocłoń, Paweł & Cisek, Piotr & Nowak-Ocłoń, Marzena & Yildirim, Mehmet Ali & Wang, Bohong & Van Fan, Yee & Varbanov, Petar Sabev & Wan Alwi, Sharifah Rafidah, 2024. "A comparative life cycle assessment of solar combined cooling, heating, and power systems based on RESHeat technology," Applied Energy, Elsevier, vol. 359(C).
    19. Pashchenko, Dmitry & Mustafin, Ravil & Karpilov, Igor, 2022. "Thermochemical recuperation by steam methane reforming as an efficient alternative to steam injection in the gas turbines," Energy, Elsevier, vol. 258(C).
    20. Zhou, Chaohui & Ni, Long & Li, Jun & Lin, Zeri & Wang, Jun & Fu, Xuhui & Yao, Yang, 2019. "Air-source heat pump heating system with a new temperature and hydraulic-balance control strategy: A field experiment in a teaching building," Renewable Energy, Elsevier, vol. 141(C), pages 148-161.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124019359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.