IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v391y2025ics0306261925006130.html
   My bibliography  Save this article

Tracking decarbonisation: Scalable and interpretable data-driven methods for district energy systems

Author

Listed:
  • Manfren, Massimiliano
  • Gonzalez-Carreon, Karla M.

Abstract

The urgent push for decarbonisation demands innovative, transparent methods to analyse and track decarbonisation strategies. This study addresses the problem of modelling energy consumption patterns at both building and district scales, ensuring transparency and scalability. By integrating well-established measurement and verification (M&V) techniques with interpretable data-driven modelling strategies, the research proposes a modelling workflow to track energy performance on a dynamic basis. The methods makes use of readily available metering data for electricity, district heating, and natural gas across a district, collected within a digital platform. A multi-resolution modelling approach is employed, with data at monthly, daily, and hourly intervals, that pinpoints anomalies and is meant to support a continuous refinement of operational strategies and efficiency measures. The Highfield Campus at the University of Southampton serves as the case study, illustrating how scalable, interpretable data-driven models can identify performance deviations and inform both short-term facilities management and long-term decarbonisation strategies. Findings reveal that simple and interpretable regression models can identify substantial variations in energy consumption pattern over longer time frames (ranging from months to years), whereas high-resolution analyses enhance the comprehension of dynamic operational patterns (days to hours). Both objectives can be achieved while maintaining a level of continuity in the modelling process, progressing from basic to detailed models while retaining interpretability. Further research will refine these models through additional physics-based constraints and explore deeper integrations with digital energy management platforms, offering replicable insights for broader district and urban-scale applications.

Suggested Citation

  • Manfren, Massimiliano & Gonzalez-Carreon, Karla M., 2025. "Tracking decarbonisation: Scalable and interpretable data-driven methods for district energy systems," Applied Energy, Elsevier, vol. 391(C).
  • Handle: RePEc:eee:appene:v:391:y:2025:i:c:s0306261925006130
    DOI: 10.1016/j.apenergy.2025.125883
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925006130
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125883?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:391:y:2025:i:c:s0306261925006130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.