IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v163y2018icp751-765.html
   My bibliography  Save this article

A novel defrosting method in gasoline vapor recovery application

Author

Listed:
  • Liang, Jierong
  • Sun, Li
  • Li, Tingxun

Abstract

Condensation method is comprehensively applied for gasoline vapor recovery (GVR), of which frosts in the heat exchanger is the greatest challenge, especially for the continuous long running cases. A novel dual channel GVR cascade refrigeration system with shell-tube heat exchanger was presented and tested in this paper. With one-work-one-standby evaporator settings, combined with refrigerant evacuation and delay switching strategies, the defrosting of low temperature shell-tube heat exchanger was analyzed and solved. Also multi-stage cycle was introduced to supply three cooling stage, which cooled the gasoline vapor from ordinary temperature to about −70 °C. By the means of industrial application validation and process calculation, the ability of the non-stop cooling during defrosting was verified. The refrigerant evacuation was proposed to prevent high pressure drop caused by frost accumulation, which also improved the cooling capacity by 28.2% and approached the defrost efficiency of 55.4%. In addition, it was found that delay switching can effectively reduce the capacity fluctuation. Based on sensitivity studies, 20 min delay was identified as the best switching timing for this device. The capacity of this system performed lower reduction, higher duty ratio and defrost efficiency.

Suggested Citation

  • Liang, Jierong & Sun, Li & Li, Tingxun, 2018. "A novel defrosting method in gasoline vapor recovery application," Energy, Elsevier, vol. 163(C), pages 751-765.
  • Handle: RePEc:eee:energy:v:163:y:2018:i:c:p:751-765
    DOI: 10.1016/j.energy.2018.08.172
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218317080
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.08.172?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Mengjie & Deng, Shiming & Xia, Liang, 2014. "A semi-empirical modeling study on the defrosting performance for an air source heat pump unit with local drainage of melted frost from its three-circuit outdoor coil," Applied Energy, Elsevier, vol. 136(C), pages 537-547.
    2. Tesch, Stefanie & Morosuk, Tatiana & Tsatsaronis, George, 2016. "Advanced exergy analysis applied to the process of regasification of LNG (liquefied natural gas) integrated into an air separation process," Energy, Elsevier, vol. 117(P2), pages 550-561.
    3. Song, Mengjie & Deng, Shiming & Dang, Chaobin & Mao, Ning & Wang, Zhihua, 2018. "Review on improvement for air source heat pump units during frosting and defrosting," Applied Energy, Elsevier, vol. 211(C), pages 1150-1170.
    4. Tang, Jinchen & Gong, Guangcai & Su, Huan & Wu, Fanhao & Herman, Cila, 2016. "Performance evaluation of a novel method of frost prevention and retardation for air source heat pumps using the orthogonal experiment design method," Applied Energy, Elsevier, vol. 169(C), pages 696-708.
    5. Shao, Liang-Liang & Yang, Liang & Zhang, Chun-Lu, 2010. "Comparison of heat pump performance using fin-and-tube and microchannel heat exchangers under frost conditions," Applied Energy, Elsevier, vol. 87(4), pages 1187-1197, April.
    6. Amer, Mohammed & Wang, Chi-Chuan, 2017. "Review of defrosting methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 53-74.
    7. Mehrpooya, Mehdi & Moftakhari Sharifzadeh, Mohammad Mehdi & Rosen, Marc A., 2015. "Optimum design and exergy analysis of a novel cryogenic air separation process with LNG (liquefied natural gas) cold energy utilization," Energy, Elsevier, vol. 90(P2), pages 2047-2069.
    8. Choi, Hwan-Jong & Kim, Byung-Soon & Kang, Donghoon & Kim, Kyung Chun, 2011. "Defrosting method adopting dual hot gas bypass for an air-to-air heat pump," Applied Energy, Elsevier, vol. 88(12), pages 4544-4555.
    9. Jang, Ji Young & Bae, Heung Hee & Lee, Seung Jun & Ha, Man Yeong, 2013. "Continuous heating of an air-source heat pump during defrosting and improvement of energy efficiency," Applied Energy, Elsevier, vol. 110(C), pages 9-16.
    10. Huang, Dong & Li, Quanxu & Yuan, Xiuling, 2009. "Comparison between hot-gas bypass defrosting and reverse-cycle defrosting methods on an air-to-water heat pump," Applied Energy, Elsevier, vol. 86(9), pages 1697-1703, September.
    11. Cho, Honghyun & Kim, Yongchan & Jang, Inkyu, 2005. "Performance of a showcase refrigeration system with multi-evaporator during on–off cycling and hot-gas bypass defrost," Energy, Elsevier, vol. 30(10), pages 1915-1930.
    12. Sun, Zhili & Liang, Youcai & Liu, Shengchun & Ji, Weichuan & Zang, Runqing & Liang, Rongzhen & Guo, Zhikai, 2016. "Comparative analysis of thermodynamic performance of a cascade refrigeration system for refrigerant couples R41/R404A and R23/R404A," Applied Energy, Elsevier, vol. 184(C), pages 19-25.
    13. Kim, Jaehong & Choi, Hwan-Jong & Kim, Kyung Chun, 2015. "A combined Dual Hot-Gas Bypass Defrosting method with accumulator heater for an air-to-air heat pump in cold region," Applied Energy, Elsevier, vol. 147(C), pages 344-352.
    14. Ghorbani, Bahram & Hamedi, Mohammad-Hossein & Amidpour, Majid & Mehrpooya, Mehdi, 2016. "Cascade refrigeration systems in integrated cryogenic natural gas process (natural gas liquids (NGL), liquefied natural gas (LNG) and nitrogen rejection unit (NRU))," Energy, Elsevier, vol. 115(P1), pages 88-106.
    15. Yaqub, M & M. Zubair, Syed & Khan, Jameel-ur-Rehman, 2000. "Performance evaluation of hot-gas by-pass capacity control schemes for refrigeration and air-conditioning systems," Energy, Elsevier, vol. 25(6), pages 543-561.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhong, Huihui & Zeng, Li & Long, Jibo & Xia, Kuiming & Lu, Haolin & Yongga, A., 2022. "Anti-frosting operation and regulation technology of air-water dual-source heat pump evaporator," Energy, Elsevier, vol. 254(PC).
    2. Xu, Hao & Xu, Xiafan & Chen, Liubiao & Guo, Jia & Wang, Junjie, 2022. "A novel cryogenic condensation system combined with gas turbine with low carbon emission for volatile compounds recovery," Energy, Elsevier, vol. 248(C).
    3. Fan, Yi & Zhao, Xudong & Han, Zhonghe & Li, Jing & Badiei, Ali & Akhlaghi, Yousef Golizadeh & Liu, Zhijian, 2021. "Scientific and technological progress and future perspectives of the solar assisted heat pump (SAHP) system," Energy, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Mengjie & Deng, Shiming & Dang, Chaobin & Mao, Ning & Wang, Zhihua, 2018. "Review on improvement for air source heat pump units during frosting and defrosting," Applied Energy, Elsevier, vol. 211(C), pages 1150-1170.
    2. Song, Mengjie & Xia, Liang & Mao, Ning & Deng, Shiming, 2016. "An experimental study on even frosting performance of an air source heat pump unit with a multi-circuit outdoor coil," Applied Energy, Elsevier, vol. 164(C), pages 36-44.
    3. Tang, Jinchen & Gong, Guangcai & Su, Huan & Wu, Fanhao & Herman, Cila, 2016. "Performance evaluation of a novel method of frost prevention and retardation for air source heat pumps using the orthogonal experiment design method," Applied Energy, Elsevier, vol. 169(C), pages 696-708.
    4. Haihui Tan & Xiaofeng Zhang & Li Zhang & Tangfei Tao & Guanghua Xu, 2019. "Ultrasonic Guided Wave Phased Array Focusing Technology and Its Application to Defrosting Performance Improvement of Air-Source Heat Pumps," Energies, MDPI, vol. 12(16), pages 1-18, August.
    5. Yi Zhang & Guanmin Zhang & Aiqun Zhang & Yinhan Jin & Ruirui Ru & Maocheng Tian, 2018. "Frosting Phenomenon and Frost-Free Technology of Outdoor Air Heat Exchanger for an Air-Source Heat Pump System in China: An Analysis and Review," Energies, MDPI, vol. 11(10), pages 1-36, October.
    6. Wang, Fenghao & Wang, Zhihua & Zheng, Yuxin & Lin, Zhang & Hao, Pengfei & Huan, Chao & Wang, Tian, 2015. "Performance investigation of a novel frost-free air-source heat pump water heater combined with energy storage and dehumidification," Applied Energy, Elsevier, vol. 139(C), pages 212-219.
    7. Song, Mengjie & Gong, Guangcai & Mao, Ning & Deng, Shiming & Wang, Zhihua, 2017. "Experimental investigation on an air source heat pump unit with a three-circuit outdoor coil for its reverse cycle defrosting termination temperature," Applied Energy, Elsevier, vol. 204(C), pages 1388-1398.
    8. Rong, Xiangyang & Long, Weiguo & Jia, Jikang & Liu, Lianhua & Si, Pengfei & Shi, Lijun & Yan, Jinyue & Liu, Boran & Zhao, Mishen, 2023. "Experimental study on a multi-evaporator mutual defrosting system for air source heat pumps," Applied Energy, Elsevier, vol. 332(C).
    9. Chen, Siliang & Chen, Kang & Zhu, Xu & Jin, Xinqiao & Du, Zhimin, 2022. "Deep learning-based image recognition method for on-demand defrosting control to save energy in commercial energy systems," Applied Energy, Elsevier, vol. 324(C).
    10. Badri, Deyae & Toublanc, Cyril & Rouaud, Olivier & Havet, Michel, 2021. "Review on frosting, defrosting and frost management techniques in industrial food freezers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    11. Kim, Jaehong & Choi, Hwan-Jong & Kim, Kyung Chun, 2015. "A combined Dual Hot-Gas Bypass Defrosting method with accumulator heater for an air-to-air heat pump in cold region," Applied Energy, Elsevier, vol. 147(C), pages 344-352.
    12. Yaxiu Gu & Guixiang He & Shuaipeng Li & Weiqi Ding & Hanlin Li & Jiahui Duan, 2022. "Study on Frost-Suppression Characteristics of Superhydrophobic Aluminum Surface Heat Exchanger Applied in Air Source Heat Pump," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    13. Yang, Bowen & Dong, Jiankai & Zhang, Long & Song, Mengjie & Jiang, Yiqiang & Deng, Shiming, 2019. "Heating and energy storage characteristics of multi-split air source heat pump based on energy storage defrosting," Applied Energy, Elsevier, vol. 238(C), pages 303-310.
    14. Han, Binglong & Xiong, Tong & Xu, Shijie & Liu, Guoqiang & Yan, Gang, 2022. "Parametric study of a room air conditioner during defrosting cycle based on a modified defrosting model," Energy, Elsevier, vol. 238(PA).
    15. Song, Mengjie & Xu, Xiangguo & Mao, Ning & Deng, Shiming & Xu, Yingjie, 2017. "Energy transfer procession in an air source heat pump unit during defrosting," Applied Energy, Elsevier, vol. 204(C), pages 679-689.
    16. Song, Mengjie & Xia, Liang & Deng, Shiming, 2016. "A modeling study on alleviating uneven defrosting for a vertical three-circuit outdoor coil in an air source heat pump unit during reverse cycle defrosting," Applied Energy, Elsevier, vol. 161(C), pages 268-278.
    17. Wei, Wenzhe & Ni, Long & Li, Shuyi & Wang, Wei & Yao, Yang & Xu, Laifu & Yang, Yahua, 2020. "A new frosting map of variable-frequency air source heat pump in severe cold region considering the variation of heating load," Renewable Energy, Elsevier, vol. 161(C), pages 184-199.
    18. Tan, Haihui & Xu, Guanghua & Tao, Tangfei & Sun, Xiaoqi & Yao, Wudong, 2015. "Experimental investigation on the defrosting performance of a finned-tube evaporator using intermittent ultrasonic vibration," Applied Energy, Elsevier, vol. 158(C), pages 220-232.
    19. Amer, Mohammed & Wang, Chi-Chuan, 2017. "Review of defrosting methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 53-74.
    20. Song, Mengjie & Pan, Dongmei & Li, Ning & Deng, Shiming, 2015. "An experimental study on the negative effects of downwards flow of the melted frost over a multi-circuit outdoor coil in an air source heat pump during reverse cycle defrosting," Applied Energy, Elsevier, vol. 138(C), pages 598-604.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:163:y:2018:i:c:p:751-765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.