IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v158y2015icp220-232.html
   My bibliography  Save this article

Experimental investigation on the defrosting performance of a finned-tube evaporator using intermittent ultrasonic vibration

Author

Listed:
  • Tan, Haihui
  • Xu, Guanghua
  • Tao, Tangfei
  • Sun, Xiaoqi
  • Yao, Wudong

Abstract

When an air-source heat pump (ASHP) was operated in heating mode under certain ambient conditions, frost always accumulated on the fin surface of its outdoor coil. Frosting may increase the energy consumption and deteriorate the performance of the ASHP, and hence, periodic defrosting is necessary. In this study, a new defrosting method using intermittent ultrasonic vibration was investigated. First, the vibration attenuation characteristics of a double-row outdoor coil and the frost growth characteristics under different ambient conditions were determined. Next, the average frost thickness with and without the application of intermittent ultrasonic vibration was calculated using MATLAB software. Finally, the decrease in defrosting energy consumption, the increase in heating capacity, and the increase in the coefficient of performance were analysed. The experimental results indicate that intermittent ultrasonic vibration could effectively remove the frost accumulated on the fin surface, and the effective defrosting area of an single ultrasonic transducer was 0.165m2 for a double-row finned-tube evaporator on which an ultrasonic transducer with a rated power of 50W and resonant frequency of 40kHz was applied. The defrosting energy consumption of the ASHP unit with ultrasonic vibration was 3.14–5.46% lower than that without ultrasonic vibration, whereas the heating capacity increased by 2.2–9.03% and the COP increased by 6.51–15.33%. In addition, the thermal comfort of the indoor side was clearly improved.

Suggested Citation

  • Tan, Haihui & Xu, Guanghua & Tao, Tangfei & Sun, Xiaoqi & Yao, Wudong, 2015. "Experimental investigation on the defrosting performance of a finned-tube evaporator using intermittent ultrasonic vibration," Applied Energy, Elsevier, vol. 158(C), pages 220-232.
  • Handle: RePEc:eee:appene:v:158:y:2015:i:c:p:220-232
    DOI: 10.1016/j.apenergy.2015.08.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915010089
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.08.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Choi, Hwan-Jong & Kim, Byung-Soon & Kang, Donghoon & Kim, Kyung Chun, 2011. "Defrosting method adopting dual hot gas bypass for an air-to-air heat pump," Applied Energy, Elsevier, vol. 88(12), pages 4544-4555.
    2. Qu, Minglu & Pan, Dongmei & Xia, Liang & Deng, Shiming & Jiang, Yiqiang, 2012. "A study of the reverse cycle defrosting performance on a multi-circuit outdoor coil unit in an air source heat pump – Part II: Modeling analysis," Applied Energy, Elsevier, vol. 91(1), pages 274-280.
    3. Jang, Ji Young & Bae, Heung Hee & Lee, Seung Jun & Ha, Man Yeong, 2013. "Continuous heating of an air-source heat pump during defrosting and improvement of energy efficiency," Applied Energy, Elsevier, vol. 110(C), pages 9-16.
    4. Huang, Dong & Li, Quanxu & Yuan, Xiuling, 2009. "Comparison between hot-gas bypass defrosting and reverse-cycle defrosting methods on an air-to-water heat pump," Applied Energy, Elsevier, vol. 86(9), pages 1697-1703, September.
    5. Qu, Minglu & Xia, Liang & Deng, Shiming & Jiang, Yiqiang, 2012. "A study of the reverse cycle defrosting performance on a multi-circuit outdoor coil unit in an air source heat pump – Part I: Experiments," Applied Energy, Elsevier, vol. 91(1), pages 122-129.
    6. Qu, Minglu & Xia, Liang & Deng, Shiming & Jiang, Yiqiang, 2012. "An experimental investigation on reverse-cycle defrosting performance for an air source heat pump using an electronic expansion valve," Applied Energy, Elsevier, vol. 97(C), pages 327-333.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Ye, 2016. "Research and applications of ultrasound in HVAC field: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 52-68.
    2. Wang, Feng & Liang, Caihua & Zhang, Xiaosong, 2018. "Research of anti-frosting technology in refrigeration and air conditioning fields: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 707-722.
    3. She, Xiaohui & Cong, Lin & Nie, Binjian & Leng, Guanghui & Peng, Hao & Chen, Yi & Zhang, Xiaosong & Wen, Tao & Yang, Hongxing & Luo, Yimo, 2018. "Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review," Applied Energy, Elsevier, vol. 232(C), pages 157-186.
    4. Song, Mengjie & Deng, Shiming & Dang, Chaobin & Mao, Ning & Wang, Zhihua, 2018. "Review on improvement for air source heat pump units during frosting and defrosting," Applied Energy, Elsevier, vol. 211(C), pages 1150-1170.
    5. Haihui Tan & Xiaofeng Zhang & Li Zhang & Tangfei Tao & Guanghua Xu, 2019. "Ultrasonic Guided Wave Phased Array Focusing Technology and Its Application to Defrosting Performance Improvement of Air-Source Heat Pumps," Energies, MDPI, vol. 12(16), pages 1-18, August.
    6. Song, Mengjie & Deng, Shiming & Mao, Ning & Ye, Xianming, 2016. "An experimental study on defrosting performance for an air source heat pump unit with a horizontally installed multi-circuit outdoor coil," Applied Energy, Elsevier, vol. 165(C), pages 371-382.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Mengjie & Deng, Shiming & Dang, Chaobin & Mao, Ning & Wang, Zhihua, 2018. "Review on improvement for air source heat pump units during frosting and defrosting," Applied Energy, Elsevier, vol. 211(C), pages 1150-1170.
    2. Song, Mengjie & Xia, Liang & Mao, Ning & Deng, Shiming, 2016. "An experimental study on even frosting performance of an air source heat pump unit with a multi-circuit outdoor coil," Applied Energy, Elsevier, vol. 164(C), pages 36-44.
    3. Long, Zhang & Jiankai, Dong & Yiqiang, Jiang & Yang, Yao, 2014. "A novel defrosting method using heat energy dissipated by the compressor of an air source heat pump," Applied Energy, Elsevier, vol. 133(C), pages 101-111.
    4. Song, Mengjie & Pan, Dongmei & Li, Ning & Deng, Shiming, 2015. "An experimental study on the negative effects of downwards flow of the melted frost over a multi-circuit outdoor coil in an air source heat pump during reverse cycle defrosting," Applied Energy, Elsevier, vol. 138(C), pages 598-604.
    5. Haihui Tan & Xiaofeng Zhang & Li Zhang & Tangfei Tao & Guanghua Xu, 2019. "Ultrasonic Guided Wave Phased Array Focusing Technology and Its Application to Defrosting Performance Improvement of Air-Source Heat Pumps," Energies, MDPI, vol. 12(16), pages 1-18, August.
    6. Yang, Seung-Hwan & Rhee, Joong Yong, 2013. "Utilization and performance evaluation of a surplus air heat pump system for greenhouse cooling and heating," Applied Energy, Elsevier, vol. 105(C), pages 244-251.
    7. Yang, Bowen & Dong, Jiankai & Zhang, Long & Song, Mengjie & Jiang, Yiqiang & Deng, Shiming, 2019. "Heating and energy storage characteristics of multi-split air source heat pump based on energy storage defrosting," Applied Energy, Elsevier, vol. 238(C), pages 303-310.
    8. Han, Binglong & Xiong, Tong & Xu, Shijie & Liu, Guoqiang & Yan, Gang, 2022. "Parametric study of a room air conditioner during defrosting cycle based on a modified defrosting model," Energy, Elsevier, vol. 238(PA).
    9. Song, Mengjie & Gong, Guangcai & Mao, Ning & Deng, Shiming & Wang, Zhihua, 2017. "Experimental investigation on an air source heat pump unit with a three-circuit outdoor coil for its reverse cycle defrosting termination temperature," Applied Energy, Elsevier, vol. 204(C), pages 1388-1398.
    10. Sheng, Wei & Liu, Pengpeng & Dang, Chaobin & Liu, Guixin, 2017. "Review of restraint frost method on cold surface," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 806-813.
    11. Minglu, Qu & Rao, Zhang & Jianbo, Chen & Yuanda, Cheng & Xudong, Zhao & Tongyao, Zhang & Zhao, Li, 2020. "Experimental analysis of heat coupling during TES based reverse cycle defrosting method for cascade air source heat pumps," Renewable Energy, Elsevier, vol. 147(P1), pages 35-42.
    12. Song, Mengjie & Xu, Xiangguo & Mao, Ning & Deng, Shiming & Xu, Yingjie, 2017. "Energy transfer procession in an air source heat pump unit during defrosting," Applied Energy, Elsevier, vol. 204(C), pages 679-689.
    13. Song, Mengjie & Xia, Liang & Deng, Shiming, 2016. "A modeling study on alleviating uneven defrosting for a vertical three-circuit outdoor coil in an air source heat pump unit during reverse cycle defrosting," Applied Energy, Elsevier, vol. 161(C), pages 268-278.
    14. Liang, Jierong & Sun, Li & Li, Tingxun, 2018. "A novel defrosting method in gasoline vapor recovery application," Energy, Elsevier, vol. 163(C), pages 751-765.
    15. Rong, Xiangyang & Long, Weiguo & Jia, Jikang & Liu, Lianhua & Si, Pengfei & Shi, Lijun & Yan, Jinyue & Liu, Boran & Zhao, Mishen, 2023. "Experimental study on a multi-evaporator mutual defrosting system for air source heat pumps," Applied Energy, Elsevier, vol. 332(C).
    16. Song, Mengjie & Deng, Shiming & Mao, Ning & Ye, Xianming, 2016. "An experimental study on defrosting performance for an air source heat pump unit with a horizontally installed multi-circuit outdoor coil," Applied Energy, Elsevier, vol. 165(C), pages 371-382.
    17. Tang, Jinchen & Gong, Guangcai & Su, Huan & Wu, Fanhao & Herman, Cila, 2016. "Performance evaluation of a novel method of frost prevention and retardation for air source heat pumps using the orthogonal experiment design method," Applied Energy, Elsevier, vol. 169(C), pages 696-708.
    18. Jang, Ji Young & Bae, Heung Hee & Lee, Seung Jun & Ha, Man Yeong, 2013. "Continuous heating of an air-source heat pump during defrosting and improvement of energy efficiency," Applied Energy, Elsevier, vol. 110(C), pages 9-16.
    19. Song, Mengjie & Deng, Shiming & Xia, Liang, 2014. "A semi-empirical modeling study on the defrosting performance for an air source heat pump unit with local drainage of melted frost from its three-circuit outdoor coil," Applied Energy, Elsevier, vol. 136(C), pages 537-547.
    20. Ma, Jiacheng & Kim, Donghun & Braun, James E. & Horton, W. Travis, 2023. "Development and validation of a dynamic modeling framework for air-source heat pumps under cycling of frosting and reverse-cycle defrosting," Energy, Elsevier, vol. 272(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:158:y:2015:i:c:p:220-232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.