IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v164y2016icp36-44.html
   My bibliography  Save this article

An experimental study on even frosting performance of an air source heat pump unit with a multi-circuit outdoor coil

Author

Listed:
  • Song, Mengjie
  • Xia, Liang
  • Mao, Ning
  • Deng, Shiming

Abstract

When the surface temperature of the outdoor coil in an air source heat pump (ASHP) unit is lower than both the air dew point and freezing point of water, frost can be formed and accumulated over outdoor coil’s surface. On the other hand, an outdoor coil normally has multiple parallel circuits on its refrigerant side for minimized refrigerant pressure loss and enhanced heat transfer efficiency. Currently, most attentions were paid to the experimental and numerical studies on defrosting with different methods, without however paying attention to the distribution of frost accumulation on the multi-circuit outdoor coil. The phenomenon of uneven frosting exists, which also maybe the most important reason of uneven defrosting for an ASHP unit with a multi-circuit outdoor coil. Therefore, in this study, a comparative and experimental study on system frosting performance when frost accumulated on a three-circuit outdoor coil’s surface in an ASHP unit at different frosting evenness values (FEVs) has been carried out. Experimental results indicated that, when the FEV was increased from 75.7% to 90.5% for an ASHP unit with a three-circuit outdoor coil, the COP could be increased from 4.10 to 4.26 at a 3600s frosting process, and increased from 3.18 to 4.00 at its last 600s.

Suggested Citation

  • Song, Mengjie & Xia, Liang & Mao, Ning & Deng, Shiming, 2016. "An experimental study on even frosting performance of an air source heat pump unit with a multi-circuit outdoor coil," Applied Energy, Elsevier, vol. 164(C), pages 36-44.
  • Handle: RePEc:eee:appene:v:164:y:2016:i:c:p:36-44
    DOI: 10.1016/j.apenergy.2015.11.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915014865
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.11.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rafati Nasr, Mohammad & Fauchoux, Melanie & Besant, Robert W. & Simonson, Carey J., 2014. "A review of frosting in air-to-air energy exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 538-554.
    2. Song, Mengjie & Deng, Shiming & Xia, Liang, 2014. "A semi-empirical modeling study on the defrosting performance for an air source heat pump unit with local drainage of melted frost from its three-circuit outdoor coil," Applied Energy, Elsevier, vol. 136(C), pages 537-547.
    3. Song, Mengjie & Xia, Liang & Deng, Shiming, 2016. "A modeling study on alleviating uneven defrosting for a vertical three-circuit outdoor coil in an air source heat pump unit during reverse cycle defrosting," Applied Energy, Elsevier, vol. 161(C), pages 268-278.
    4. Ahn, Jae Hwan & Kang, Hoon & Lee, Ho Seong & Jung, Hae Won & Baek, Changhyun & Kim, Yongchan, 2014. "Heating performance characteristics of a dual source heat pump using air and waste heat in electric vehicles," Applied Energy, Elsevier, vol. 119(C), pages 1-9.
    5. Wang, W. & Feng, Y.C. & Zhu, J.H. & Li, L.T. & Guo, Q.C. & Lu, W.P., 2013. "Performances of air source heat pump system for a kind of mal-defrost phenomenon appearing in moderate climate conditions," Applied Energy, Elsevier, vol. 112(C), pages 1138-1145.
    6. Choi, Hwan-Jong & Kim, Byung-Soon & Kang, Donghoon & Kim, Kyung Chun, 2011. "Defrosting method adopting dual hot gas bypass for an air-to-air heat pump," Applied Energy, Elsevier, vol. 88(12), pages 4544-4555.
    7. Qu, Minglu & Pan, Dongmei & Xia, Liang & Deng, Shiming & Jiang, Yiqiang, 2012. "A study of the reverse cycle defrosting performance on a multi-circuit outdoor coil unit in an air source heat pump – Part II: Modeling analysis," Applied Energy, Elsevier, vol. 91(1), pages 274-280.
    8. Jang, Ji Young & Bae, Heung Hee & Lee, Seung Jun & Ha, Man Yeong, 2013. "Continuous heating of an air-source heat pump during defrosting and improvement of energy efficiency," Applied Energy, Elsevier, vol. 110(C), pages 9-16.
    9. Huang, Dong & Li, Quanxu & Yuan, Xiuling, 2009. "Comparison between hot-gas bypass defrosting and reverse-cycle defrosting methods on an air-to-water heat pump," Applied Energy, Elsevier, vol. 86(9), pages 1697-1703, September.
    10. Song, Mengjie & Deng, Shiming & Mao, Ning & Ye, Xianming, 2016. "An experimental study on defrosting performance for an air source heat pump unit with a horizontally installed multi-circuit outdoor coil," Applied Energy, Elsevier, vol. 165(C), pages 371-382.
    11. Qu, Minglu & Xia, Liang & Deng, Shiming & Jiang, Yiqiang, 2012. "A study of the reverse cycle defrosting performance on a multi-circuit outdoor coil unit in an air source heat pump – Part I: Experiments," Applied Energy, Elsevier, vol. 91(1), pages 122-129.
    12. Li, L.T. & Wang, W. & Sun, Y.Y. & Feng, Y.C. & Lu, W.P. & Zhu, J.H. & Ge, Y.J., 2014. "Investigation of defrosting water retention on the surface of evaporator impacting the performance of air source heat pump during periodic frosting–defrosting cycles," Applied Energy, Elsevier, vol. 135(C), pages 98-107.
    13. Yin, Hai-Jiao & Yang, Zhao & Chen, Ai-Qiang & Zhang, Na, 2012. "Experimental research on a novel cold storage defrost method based on air bypass circulation and electric heater," Energy, Elsevier, vol. 37(1), pages 623-631.
    14. Kim, Jaehong & Choi, Hwan-Jong & Kim, Kyung Chun, 2015. "A combined Dual Hot-Gas Bypass Defrosting method with accumulator heater for an air-to-air heat pump in cold region," Applied Energy, Elsevier, vol. 147(C), pages 344-352.
    15. Song, Mengjie & Pan, Dongmei & Li, Ning & Deng, Shiming, 2015. "An experimental study on the negative effects of downwards flow of the melted frost over a multi-circuit outdoor coil in an air source heat pump during reverse cycle defrosting," Applied Energy, Elsevier, vol. 138(C), pages 598-604.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Mengjie & Gong, Guangcai & Mao, Ning & Deng, Shiming & Wang, Zhihua, 2017. "Experimental investigation on an air source heat pump unit with a three-circuit outdoor coil for its reverse cycle defrosting termination temperature," Applied Energy, Elsevier, vol. 204(C), pages 1388-1398.
    2. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    3. Mao, Ning & Pan, Dongmei & Li, Zhao & Xu, Yingjie & Song, Mengjie & Deng, Shiming, 2017. "A numerical study on influences of building envelope heat gain on operating performances of a bed-based task/ambient air conditioning (TAC) system in energy saving and thermal comfort," Applied Energy, Elsevier, vol. 192(C), pages 213-221.
    4. Wang, Feng & Liang, Caihua & Zhang, Xiaosong, 2018. "Research of anti-frosting technology in refrigeration and air conditioning fields: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 707-722.
    5. Xu, Wei & Liu, Changping & Li, Angui & Li, Ji & Qiao, Biao, 2020. "Feasibility and performance study on hybrid air source heat pump system for ultra-low energy building in severe cold region of China," Renewable Energy, Elsevier, vol. 146(C), pages 2124-2133.
    6. Adnan Rasheed & Jong Won Lee & Hyeon Tae Kim & Hyun Woo Lee, 2022. "Study on Heating and Cooling Performance of Air-to-Water Heat Pump System for Protected Horticulture," Energies, MDPI, vol. 15(15), pages 1-19, July.
    7. Hu, Wenju & Song, Mengjie & Jiang, Yiqiang & Yao, Yang & Gao, Yan, 2019. "A modeling study on the heat storage and release characteristics of a phase change material based double-spiral coiled heat exchanger in an air source heat pump for defrosting," Applied Energy, Elsevier, vol. 236(C), pages 877-892.
    8. Wei, Wenzhe & Ni, Long & Li, Shuyi & Wang, Wei & Yao, Yang & Xu, Laifu & Yang, Yahua, 2020. "A new frosting map of variable-frequency air source heat pump in severe cold region considering the variation of heating load," Renewable Energy, Elsevier, vol. 161(C), pages 184-199.
    9. Song, Mengjie & Deng, Shiming & Dang, Chaobin & Mao, Ning & Wang, Zhihua, 2018. "Review on improvement for air source heat pump units during frosting and defrosting," Applied Energy, Elsevier, vol. 211(C), pages 1150-1170.
    10. Yang, Bowen & Dong, Jiankai & Zhang, Long & Song, Mengjie & Jiang, Yiqiang & Deng, Shiming, 2019. "Heating and energy storage characteristics of multi-split air source heat pump based on energy storage defrosting," Applied Energy, Elsevier, vol. 238(C), pages 303-310.
    11. Mao, Ning & Hao, Jingyu & Cui, Borui & Li, Yuxing & Song, Mengjie & Xu, Yingjie & Deng, Shiming, 2018. "Energy performance of a bedroom task/ambient air conditioning (TAC) system applied in different climate zones of China," Energy, Elsevier, vol. 159(C), pages 724-736.
    12. Pu, Jihong & Shen, Chao & Zhang, Chunxiao & Liu, Xingjiang, 2021. "A semi-experimental method for evaluating frosting performance of air source heat pumps," Renewable Energy, Elsevier, vol. 173(C), pages 913-925.
    13. Liu, Shengchun & Li, Hailong & Song, Mengjie & Dai, Baomin & Sun, Zhili, 2018. "Impacts on the solidification of water on plate surface for cold energy storage using ice slurry," Applied Energy, Elsevier, vol. 227(C), pages 284-293.
    14. Haolu Liu & Khurram Yousaf & Kunjie Chen & Rui Fan & Jiaxin Liu & Shakeel Ahmed Soomro, 2018. "Design and Thermal Analysis of an Air Source Heat Pump Dryer for Food Drying," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    15. Xiong, Yongqing & Yang, Xiaohan, 2016. "Government subsidies for the Chinese photovoltaic industry," Energy Policy, Elsevier, vol. 99(C), pages 111-119.
    16. Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.
    17. Wang, Xinru & Xia, Liang & Bales, Chris & Zhang, Xingxing & Copertaro, Benedetta & Pan, Song & Wu, Jinshun, 2020. "A systematic review of recent air source heat pump (ASHP) systems assisted by solar thermal, photovoltaic and photovoltaic/thermal sources," Renewable Energy, Elsevier, vol. 146(C), pages 2472-2487.
    18. Zhang, Qunli & Zhang, Lin & Nie, Jinzhe & Li, Yinlong, 2017. "Techno-economic analysis of air source heat pump applied for space heating in northern China," Applied Energy, Elsevier, vol. 207(C), pages 533-542.
    19. Song, Mengjie & Xu, Xiangguo & Mao, Ning & Deng, Shiming & Xu, Yingjie, 2017. "Energy transfer procession in an air source heat pump unit during defrosting," Applied Energy, Elsevier, vol. 204(C), pages 679-689.
    20. Wang, Wei & Zhang, Shiqiang & Li, Zhaoyang & Sun, Yuying & Deng, Shiming & Wu, Xu, 2020. "Determination of the optimal defrosting initiating time point for an ASHP unit based on the minimum loss coefficient in the nominal output heating energy," Energy, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Mengjie & Deng, Shiming & Dang, Chaobin & Mao, Ning & Wang, Zhihua, 2018. "Review on improvement for air source heat pump units during frosting and defrosting," Applied Energy, Elsevier, vol. 211(C), pages 1150-1170.
    2. Song, Mengjie & Gong, Guangcai & Mao, Ning & Deng, Shiming & Wang, Zhihua, 2017. "Experimental investigation on an air source heat pump unit with a three-circuit outdoor coil for its reverse cycle defrosting termination temperature," Applied Energy, Elsevier, vol. 204(C), pages 1388-1398.
    3. Song, Mengjie & Xia, Liang & Deng, Shiming, 2016. "A modeling study on alleviating uneven defrosting for a vertical three-circuit outdoor coil in an air source heat pump unit during reverse cycle defrosting," Applied Energy, Elsevier, vol. 161(C), pages 268-278.
    4. Haihui Tan & Xiaofeng Zhang & Li Zhang & Tangfei Tao & Guanghua Xu, 2019. "Ultrasonic Guided Wave Phased Array Focusing Technology and Its Application to Defrosting Performance Improvement of Air-Source Heat Pumps," Energies, MDPI, vol. 12(16), pages 1-18, August.
    5. Song, Mengjie & Xu, Xiangguo & Mao, Ning & Deng, Shiming & Xu, Yingjie, 2017. "Energy transfer procession in an air source heat pump unit during defrosting," Applied Energy, Elsevier, vol. 204(C), pages 679-689.
    6. Song, Mengjie & Deng, Shiming & Mao, Ning & Ye, Xianming, 2016. "An experimental study on defrosting performance for an air source heat pump unit with a horizontally installed multi-circuit outdoor coil," Applied Energy, Elsevier, vol. 165(C), pages 371-382.
    7. Sheng, Wei & Liu, Pengpeng & Dang, Chaobin & Liu, Guixin, 2017. "Review of restraint frost method on cold surface," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 806-813.
    8. Yang, Bowen & Dong, Jiankai & Zhang, Long & Song, Mengjie & Jiang, Yiqiang & Deng, Shiming, 2019. "Heating and energy storage characteristics of multi-split air source heat pump based on energy storage defrosting," Applied Energy, Elsevier, vol. 238(C), pages 303-310.
    9. Tan, Haihui & Xu, Guanghua & Tao, Tangfei & Sun, Xiaoqi & Yao, Wudong, 2015. "Experimental investigation on the defrosting performance of a finned-tube evaporator using intermittent ultrasonic vibration," Applied Energy, Elsevier, vol. 158(C), pages 220-232.
    10. Liang, Jierong & Sun, Li & Li, Tingxun, 2018. "A novel defrosting method in gasoline vapor recovery application," Energy, Elsevier, vol. 163(C), pages 751-765.
    11. Wang, Feng & Liang, Caihua & Zhang, Xiaosong, 2018. "Research of anti-frosting technology in refrigeration and air conditioning fields: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 707-722.
    12. Tang, Jinchen & Gong, Guangcai & Su, Huan & Wu, Fanhao & Herman, Cila, 2016. "Performance evaluation of a novel method of frost prevention and retardation for air source heat pumps using the orthogonal experiment design method," Applied Energy, Elsevier, vol. 169(C), pages 696-708.
    13. Han, Binglong & Xiong, Tong & Xu, Shijie & Liu, Guoqiang & Yan, Gang, 2022. "Parametric study of a room air conditioner during defrosting cycle based on a modified defrosting model," Energy, Elsevier, vol. 238(PA).
    14. Long, Zhang & Jiankai, Dong & Yiqiang, Jiang & Yang, Yao, 2014. "A novel defrosting method using heat energy dissipated by the compressor of an air source heat pump," Applied Energy, Elsevier, vol. 133(C), pages 101-111.
    15. Song, Mengjie & Pan, Dongmei & Li, Ning & Deng, Shiming, 2015. "An experimental study on the negative effects of downwards flow of the melted frost over a multi-circuit outdoor coil in an air source heat pump during reverse cycle defrosting," Applied Energy, Elsevier, vol. 138(C), pages 598-604.
    16. Minglu, Qu & Rao, Zhang & Jianbo, Chen & Yuanda, Cheng & Xudong, Zhao & Tongyao, Zhang & Zhao, Li, 2020. "Experimental analysis of heat coupling during TES based reverse cycle defrosting method for cascade air source heat pumps," Renewable Energy, Elsevier, vol. 147(P1), pages 35-42.
    17. Yang, Seung-Hwan & Rhee, Joong Yong, 2013. "Utilization and performance evaluation of a surplus air heat pump system for greenhouse cooling and heating," Applied Energy, Elsevier, vol. 105(C), pages 244-251.
    18. Rong, Xiangyang & Long, Weiguo & Jia, Jikang & Liu, Lianhua & Si, Pengfei & Shi, Lijun & Yan, Jinyue & Liu, Boran & Zhao, Mishen, 2023. "Experimental study on a multi-evaporator mutual defrosting system for air source heat pumps," Applied Energy, Elsevier, vol. 332(C).
    19. Pu, Jihong & Shen, Chao & Zhang, Chunxiao & Liu, Xingjiang, 2021. "A semi-experimental method for evaluating frosting performance of air source heat pumps," Renewable Energy, Elsevier, vol. 173(C), pages 913-925.
    20. Rafati Nasr, Mohammad & Kassai, Miklos & Ge, Gaoming & Simonson, Carey J., 2015. "Evaluation of defrosting methods for air-to-air heat/energy exchangers on energy consumption of ventilation," Applied Energy, Elsevier, vol. 151(C), pages 32-40.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:164:y:2016:i:c:p:36-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.