IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v117y2016ip2p550-561.html
   My bibliography  Save this article

Advanced exergy analysis applied to the process of regasification of LNG (liquefied natural gas) integrated into an air separation process

Author

Listed:
  • Tesch, Stefanie
  • Morosuk, Tatiana
  • Tsatsaronis, George

Abstract

Natural gas is one of the most important sources of energy, the demand for which increases continuously. The LNG (liquefied natural gas) market rises currently exponentially; many countries entered this market recently. Applying an efficient regasification process for LNG is now more important than in the past. At present, mainly regasification of LNG via direct or indirect heating is used for industrial applications. Regasification of LNG can also be combined with generation of electricity. Another possibility is the integration of the regasification into a processes requiring low temperatures. A new concept dealing with the integration of regasification of LNG into a cryogenic process of air separation has recently been developed at Technische Universität Berlin. This paper evaluates two options of integrating the regasification of LNG into an air separation system. Conventional and advanced exergy analyses are used in the evaluation.

Suggested Citation

  • Tesch, Stefanie & Morosuk, Tatiana & Tsatsaronis, George, 2016. "Advanced exergy analysis applied to the process of regasification of LNG (liquefied natural gas) integrated into an air separation process," Energy, Elsevier, vol. 117(P2), pages 550-561.
  • Handle: RePEc:eee:energy:v:117:y:2016:i:p2:p:550-561
    DOI: 10.1016/j.energy.2016.04.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216304376
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.04.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xia, Guanghui & Sun, Qingxuan & Cao, Xu & Wang, Jiangfeng & Yu, Yizhao & Wang, Laisheng, 2014. "Thermodynamic analysis and optimization of a solar-powered transcritical CO2 (carbon dioxide) power cycle for reverse osmosis desalination based on the recovery of cryogenic energy of LNG (liquefied n," Energy, Elsevier, vol. 66(C), pages 643-653.
    2. Morosuk, Tatiana & Tsatsaronis, George, 2008. "A new approach to the exergy analysis of absorption refrigeration machines," Energy, Elsevier, vol. 33(6), pages 890-907.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Longquan & Liu, Zhiqiang & Deng, Chengwei & Ren, Jingzheng & Ji, Feng & Sun, Yi & Xiao, Zhenyu & Yang, Sheng, 2021. "Conventional and advanced exergy analyses of a vehicular proton exchange membrane fuel cell power system," Energy, Elsevier, vol. 222(C).
    2. Paweł Ziółkowski & Stanisław Głuch & Piotr Józef Ziółkowski & Janusz Badur, 2022. "Compact High Efficiency and Zero-Emission Gas-Fired Power Plant with Oxy-Combustion and Carbon Capture," Energies, MDPI, vol. 15(7), pages 1-39, April.
    3. Mehrpooya, Mehdi & Shafaei, Arash, 2016. "Advanced exergy analysis of novel flash based Helium recovery from natural gas processes," Energy, Elsevier, vol. 114(C), pages 64-83.
    4. Zhang, Ruihang & Wu, Chufan & Song, Wuwenjie & Deng, Chun & Yang, Minbo, 2020. "Energy integration of LNG light hydrocarbon recovery and air separation: Process design and technic-economic analysis," Energy, Elsevier, vol. 207(C).
    5. Liang, Yingzong & Hui, Chi Wai, 2018. "Convexification for natural gas transmission networks optimization," Energy, Elsevier, vol. 158(C), pages 1001-1016.
    6. Arya, Adarsh Kumar & Kumar, Adarsh & Pujari, Murali & Pacheco, Diego A.de J., 2023. "Improving natural gas supply chain profitability: A multi-methods optimization study," Energy, Elsevier, vol. 282(C).
    7. Li, Yongyi & Liu, Yujia & Zhang, Guoqiang & Yang, Yongping, 2020. "Thermodynamic analysis of a novel combined cooling and power system utilizing liquefied natural gas (LNG) cryogenic energy and low-temperature waste heat," Energy, Elsevier, vol. 199(C).
    8. Liang, Jierong & Sun, Li & Li, Tingxun, 2018. "A novel defrosting method in gasoline vapor recovery application," Energy, Elsevier, vol. 163(C), pages 751-765.
    9. Fallah, M. & Siyahi, H. & Ghiasi, R. Akbarpour & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2016. "Comparison of different gas turbine cycles and advanced exergy analysis of the most effective," Energy, Elsevier, vol. 116(P1), pages 701-715.
    10. Park, Jinwoo & Qi, Meng & Kim, Jeongdong & Noh, Wonjun & Lee, Inkyu & Moon, Il, 2020. "Exergoeconomic optimization of liquid air production by use of liquefied natural gas cold energy," Energy, Elsevier, vol. 207(C).
    11. Zhang, Qiang & Zhang, Ningqi & Zhu, Shengbo & Heydarian, Dariush, 2023. "Thermodynamic simulation and optimization of natural gas liquefaction cycle based on the common structure of organic rankine cycle," Energy, Elsevier, vol. 264(C).
    12. Tesch, Stefanie & Morosuk, Tatiana & Tsatsaronis, George, 2017. "Exergetic and economic evaluation of safety-related concepts for the regasification of LNG integrated into air separation processes," Energy, Elsevier, vol. 141(C), pages 2458-2469.
    13. Chen, Shiqing & Dong, Xuezhi & Xu, Jian & Zhang, Hualiang & Gao, Qing & Tan, Chunqing, 2019. "Thermodynamic evaluation of the novel distillation column of the air separation unit with integration of liquefied natural gas (LNG) regasification," Energy, Elsevier, vol. 171(C), pages 341-359.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, X.G. & He, C. & He, C.C. & Chen, J.J. & Zhang, B.J. & Chen, Q.L., 2017. "A new retrofit approach to the absorption-stabilization process for improving energy efficiency in refineries," Energy, Elsevier, vol. 118(C), pages 1131-1145.
    2. Tomków, Łukasz & Cholewiński, Maciej, 2015. "Improvement of the LNG (liquid natural gas) regasification efficiency by utilizing the cold exergy with a coupled absorption – ORC (organic Rankine cycle)," Energy, Elsevier, vol. 87(C), pages 645-653.
    3. Sun, Zhixin & Xu, Fuquan & Wang, Shujia & Lai, Jianpeng & Lin, Kui, 2017. "Comparative study of Rankine cycle configurations utilizing LNG cold energy under different NG distribution pressures," Energy, Elsevier, vol. 139(C), pages 380-393.
    4. Uysal, Cuneyt & Keçebaş, Ali, 2021. "Advanced exergoeconomic analysis with using modified productive structure analysis: An application for a real gas turbine cycle," Energy, Elsevier, vol. 223(C).
    5. Fallah, M. & Siyahi, H. & Ghiasi, R. Akbarpour & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2016. "Comparison of different gas turbine cycles and advanced exergy analysis of the most effective," Energy, Elsevier, vol. 116(P1), pages 701-715.
    6. Amini, Ali & Mirkhani, Nima & Pakjesm Pourfard, Pedram & Ashjaee, Mehdi & Khodkar, Mohammad Amin, 2015. "Thermo-economic optimization of low-grade waste heat recovery in Yazd combined-cycle power plant (Iran) by a CO2 transcritical Rankine cycle," Energy, Elsevier, vol. 86(C), pages 74-84.
    7. Stanek, Wojciech & Gazda, Wiesław, 2014. "Exergo-ecological evaluation of adsorption chiller system," Energy, Elsevier, vol. 76(C), pages 42-48.
    8. Gebreslassie, Berhane H. & Medrano, Marc & Boer, Dieter, 2010. "Exergy analysis of multi-effect water–LiBr absorption systems: From half to triple effect," Renewable Energy, Elsevier, vol. 35(8), pages 1773-1782.
    9. Aghaei, Ali Tavakkol & Saray, Rahim Khoshbakhti, 2021. "Optimization of a combined cooling, heating, and power (CCHP) system with a gas turbine prime mover: A case study in the dairy industry," Energy, Elsevier, vol. 229(C).
    10. Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
    11. Khoa, T.D. & Shuhaimi, M. & Hashim, H. & Panjeshahi, M.H., 2010. "Optimal design of distillation column using three dimensional exergy analysis curves," Energy, Elsevier, vol. 35(12), pages 5309-5319.
    12. Battisti, Felipe G. & Cardemil, José M. & da Silva, Alexandre K., 2016. "A multivariable optimization of a Brayton power cycle operating with CO2 as working fluid," Energy, Elsevier, vol. 112(C), pages 908-916.
    13. Khoa, T.D. & Shuhaimi, M. & Nam, H.M., 2012. "Application of three dimensional exergy analysis curves for absorption columns," Energy, Elsevier, vol. 37(1), pages 273-280.
    14. Zhong, Xiaohui & Chen, Tao & Sun, Xiangyu & Song, Juanjuan & Zeng, Jiajun, 2022. "Conventional and advanced exergy analysis of a novel wind-to-heat system," Energy, Elsevier, vol. 261(PA).
    15. Morosuk, T. & Tsatsaronis, G., 2009. "Advanced exergetic evaluation of refrigeration machines using different working fluids," Energy, Elsevier, vol. 34(12), pages 2248-2258.
    16. Tsatsaronis, G. & Morosuk, T., 2010. "Advanced exergetic analysis of a novel system for generating electricity and vaporizing liquefied natural gas," Energy, Elsevier, vol. 35(2), pages 820-829.
    17. He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
    18. Morosuk, Tatiana & Tsatsaronis, George, 2019. "Splitting physical exergy: Theory and application," Energy, Elsevier, vol. 167(C), pages 698-707.
    19. Hamdy, Sarah & Morosuk, Tatiana & Tsatsaronis, George, 2017. "Cryogenics-based energy storage: Evaluation of cold exergy recovery cycles," Energy, Elsevier, vol. 138(C), pages 1069-1080.
    20. Sarabchi, N. & Khoshbakhti Saray, R. & Mahmoudi, S.M.S., 2013. "Utilization of waste heat from a HCCI (homogeneous charge compression ignition) engine in a tri-generation system," Energy, Elsevier, vol. 55(C), pages 965-976.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:117:y:2016:i:p2:p:550-561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.