IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2590-d785478.html
   My bibliography  Save this article

Compact High Efficiency and Zero-Emission Gas-Fired Power Plant with Oxy-Combustion and Carbon Capture

Author

Listed:
  • Paweł Ziółkowski

    (Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland)

  • Stanisław Głuch

    (Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland)

  • Piotr Józef Ziółkowski

    (Energy Conversion Department, Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk, Poland
    Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland)

  • Janusz Badur

    (Energy Conversion Department, Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk, Poland)

Abstract

Reduction of greenhouse gases emissions is a key challenge for the power generation industry, requiring the implementation of new designs and methods of electricity generation. This article presents a design solution for a novel thermodynamic cycle with two new devices—namely, a wet combustion chamber and a spray-ejector condenser. In the proposed cycle, high temperature occurs in the combustion chamber because of fuel combustion by pure oxygen. As a consequence of the chemical reaction and open water cooling, a mixture of H 2 O and CO 2 is produced. The resulting working medium expands in one turbine that combines the advantages of gas turbines (high turbine inlet temperatures) and steam turbines (full expansion to vacuum). Moreover, the main purpose of the spray-ejector condenser is the simultaneous condensation of water vapour and compression of CO 2 from condensing pressure to about 1 bar. The efficiency of the proposed cycle has been estimated at 37.78%. COM-GAS software has been used for computational flow mechanics simulations. The calculation considers the drop in efficiency due to air separation unit, carbon capture, and spray-ejector condenser processes. The advantage of the proposed cycle is its compactness that can be achieved by replacing the largest equipment in the steam unit. The authors make reference to a steam generator, a conventional steam condenser, and the steam-gas turbine. Instead of classical heat exchanger equipment, the authors propose non-standard devices, such as a wet combustion chamber and spray-ejector condenser.

Suggested Citation

  • Paweł Ziółkowski & Stanisław Głuch & Piotr Józef Ziółkowski & Janusz Badur, 2022. "Compact High Efficiency and Zero-Emission Gas-Fired Power Plant with Oxy-Combustion and Carbon Capture," Energies, MDPI, vol. 15(7), pages 1-39, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2590-:d:785478
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2590/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2590/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kinnaman, Thomas C., 2011. "The economic impact of shale gas extraction: A review of existing studies," Ecological Economics, Elsevier, vol. 70(7), pages 1243-1249, May.
    2. Badur, Janusz & Ziółkowski, Paweł & Sławiński, Daniel & Kornet, Sebastian, 2015. "An approach for estimation of water wall degradation within pulverized-coal boilers," Energy, Elsevier, vol. 92(P1), pages 142-152.
    3. Halina Pawlak-Kruczek & Mateusz Wnukowski & Lukasz Niedzwiecki & Michał Czerep & Mateusz Kowal & Krystian Krochmalny & Jacek Zgóra & Michał Ostrycharczyk & Marcin Baranowski & Wilhelm Jan Tic & Joanna, 2019. "Torrefaction as a Valorization Method Used Prior to the Gasification of Sewage Sludge," Energies, MDPI, vol. 12(1), pages 1-18, January.
    4. Wienchol, Paulina & Szlęk, Andrzej & Ditaranto, Mario, 2020. "Waste-to-energy technology integrated with carbon capture – Challenges and opportunities," Energy, Elsevier, vol. 198(C).
    5. Yantovski, E. & Gorski, J. & Smyth, B. & ten Elshof, J., 2004. "Zero-emission fuel-fired power plants with ion transport membrane," Energy, Elsevier, vol. 29(12), pages 2077-2088.
    6. Aneke, Mathew & Wang, Meihong, 2015. "Process analysis of pressurized oxy-coal power cycle for carbon capture application integrated with liquid air power generation and binary cycle engines," Applied Energy, Elsevier, vol. 154(C), pages 556-566.
    7. Fidelis. I. Abam & Ogheneruona E. Diemuodeke & Ekwe. B. Ekwe & Mohammed Alghassab & Olusegun D. Samuel & Zafar A. Khan & Muhammad Imran & Muhammad Farooq, 2020. "Exergoeconomic and Environmental Modeling of Integrated Polygeneration Power Plant with Biomass-Based Syngas Supplemental Firing," Energies, MDPI, vol. 13(22), pages 1-27, November.
    8. Ziółkowski, Paweł & Badur, Janusz & Ziółkowski, Piotr Józef, 2019. "An energetic analysis of a gas turbine with regenerative heating using turbine extraction at intermediate pressure - Brayton cycle advanced according to Szewalski's idea," Energy, Elsevier, vol. 185(C), pages 763-786.
    9. Kowalczyk, Tomasz & Badur, Janusz & Ziółkowski, Paweł, 2020. "Comparative study of a bottoming SRC and ORC for Joule–Brayton cycle cooling modular HTR exergy losses, fluid-flow machinery main dimensions, and partial loads," Energy, Elsevier, vol. 206(C).
    10. Fu, Chao & Vikse, Matias & Gundersen, Truls, 2018. "Work and heat integration: An emerging research area," Energy, Elsevier, vol. 158(C), pages 796-806.
    11. Tesch, Stefanie & Morosuk, Tatiana & Tsatsaronis, George, 2016. "Advanced exergy analysis applied to the process of regasification of LNG (liquefied natural gas) integrated into an air separation process," Energy, Elsevier, vol. 117(P2), pages 550-561.
    12. Gładysz, Paweł & Stanek, Wojciech & Czarnowska, Lucyna & Węcel, Gabriel & Langørgen, Øyvind, 2017. "Thermodynamic assessment of an integrated MILD oxyfuel combustion power plant," Energy, Elsevier, vol. 137(C), pages 761-774.
    13. Jenner, Steffen & Lamadrid, Alberto J., 2013. "Shale gas vs. coal: Policy implications from environmental impact comparisons of shale gas, conventional gas, and coal on air, water, and land in the United States," Energy Policy, Elsevier, vol. 53(C), pages 442-453.
    14. Ertesvåg, Ivar S. & Kvamsdal, Hanne M. & Bolland, Olav, 2005. "Exergy analysis of a gas-turbine combined-cycle power plant with precombustion CO2 capture," Energy, Elsevier, vol. 30(1), pages 5-39.
    15. Staicovici, M.D., 2002. "Further research zero CO2 emission power production: the ‘COOLENERG’ process," Energy, Elsevier, vol. 27(9), pages 831-844.
    16. Kvamsdal, Hanne M. & Jordal, Kristin & Bolland, Olav, 2007. "A quantitative comparison of gas turbine cycles with CO2 capture," Energy, Elsevier, vol. 32(1), pages 10-24.
    17. Adamczyk, Wojciech P. & Bialecki, Ryszard A. & Ditaranto, Mario & Gladysz, Pawel & Haugen, Nils Erland L. & Katelbach-Wozniak, Anna & Klimanek, Adam & Sladek, Slawomir & Szlek, Andrzej & Wecel, Gabrie, 2017. "CFD modeling and thermodynamic analysis of a concept of a MILD-OXY combustion large scale pulverized coal boiler," Energy, Elsevier, vol. 140(P1), pages 1305-1315.
    18. Vishwajeet & Halina Pawlak-Kruczek & Marcin Baranowski & Michał Czerep & Artur Chorążyczewski & Krystian Krochmalny & Michał Ostrycharczyk & Paweł Ziółkowski & Paweł Madejski & Tadeusz Mączka & Amit A, 2022. "Entrained Flow Plasma Gasification of Sewage Sludge–Proof-of-Concept and Fate of Inorganics," Energies, MDPI, vol. 15(5), pages 1-14, March.
    19. Fu, Qian & Kansha, Yasuki & Song, Chunfeng & Liu, Yuping & Ishizuka, Masanori & Tsutsumi, Atsushi, 2016. "An elevated-pressure cryogenic air separation unit based on self-heat recuperation technology for integrated gasification combined cycle systems," Energy, Elsevier, vol. 103(C), pages 440-446.
    20. Hyrzyński, Rafał & Ziółkowski, Paweł & Gotzman, Sylwia & Kraszewski, Bartosz & Ochrymiuk, Tomasz & Badur, Janusz, 2021. "Comprehensive thermodynamic analysis of the CAES system coupled with the underground thermal energy storage taking into account global, central and local level of energy conversion," Renewable Energy, Elsevier, vol. 169(C), pages 379-403.
    21. Zhang, Na & Lior, Noam, 2008. "Two novel oxy-fuel power cycles integrated with natural gas reforming and CO2 capture," Energy, Elsevier, vol. 33(2), pages 340-351.
    22. Stefania Osk Gardarsdottir & Edoardo De Lena & Matteo Romano & Simon Roussanaly & Mari Voldsund & José-Francisco Pérez-Calvo & David Berstad & Chao Fu & Rahul Anantharaman & Daniel Sutter & Matteo Gaz, 2019. "Comparison of Technologies for CO 2 Capture from Cement Production—Part 2: Cost Analysis," Energies, MDPI, vol. 12(3), pages 1-20, February.
    23. van der Ham, L.V. & Kjelstrup, S., 2010. "Exergy analysis of two cryogenic air separation processes," Energy, Elsevier, vol. 35(12), pages 4731-4739.
    24. Mari Voldsund & Stefania Osk Gardarsdottir & Edoardo De Lena & José-Francisco Pérez-Calvo & Armin Jamali & David Berstad & Chao Fu & Matteo Romano & Simon Roussanaly & Rahul Anantharaman & Helmut Hopp, 2019. "Comparison of Technologies for CO 2 Capture from Cement Production—Part 1: Technical Evaluation," Energies, MDPI, vol. 12(3), pages 1-33, February.
    25. Badur, Janusz & Lemański, Marcin & Kowalczyk, Tomasz & Ziółkowski, Paweł & Kornet, Sebastian, 2018. "Zero-dimensional robust model of an SOFC with internal reforming for hybrid energy cycles," Energy, Elsevier, vol. 158(C), pages 128-138.
    26. Park, Sung Ku & Kim, Tong Seop & Sohn, Jeong L. & Lee, Young Duk, 2011. "An integrated power generation system combining solid oxide fuel cell and oxy-fuel combustion for high performance and CO2 capture," Applied Energy, Elsevier, vol. 88(4), pages 1187-1196, April.
    27. Magdalena Jaremkiewicz & Dawid Taler & Piotr Dzierwa & Jan Taler, 2019. "Determination of Transient Fluid Temperature and Thermal Stresses in Pressure Thick-Walled Elements Using a New Design Thermometer," Energies, MDPI, vol. 12(2), pages 1-21, January.
    28. Jaremkiewicz, Magdalena & Dzierwa, Piotr & Taler, Dawid & Taler, Jan, 2019. "Monitoring of transient thermal stresses in pressure components of steam boilers using an innovative technique for measuring the fluid temperature," Energy, Elsevier, vol. 175(C), pages 139-150.
    29. Hanak, Dawid P. & Powell, Dante & Manovic, Vasilije, 2017. "Techno-economic analysis of oxy-combustion coal-fired power plant with cryogenic oxygen storage," Applied Energy, Elsevier, vol. 191(C), pages 193-203.
    30. Witanowski, Ł. & Klonowicz, P. & Lampart, P. & Suchocki, T. & Jędrzejewski, Ł. & Zaniewski, D. & Klimaszewski, P., 2020. "Optimization of an axial turbine for a small scale ORC waste heat recovery system," Energy, Elsevier, vol. 205(C).
    31. Rahm, Dianne, 2011. "Regulating hydraulic fracturing in shale gas plays: The case of Texas," Energy Policy, Elsevier, vol. 39(5), pages 2974-2981, May.
    32. Burdyny, Thomas & Struchtrup, Henning, 2010. "Hybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process," Energy, Elsevier, vol. 35(5), pages 1884-1897.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Madejski & Piotr Michalak & Michał Karch & Tomasz Kuś & Krzysztof Banasiak, 2022. "Monitoring of Thermal and Flow Processes in the Two-Phase Spray-Ejector Condenser for Thermal Power Plant Applications," Energies, MDPI, vol. 15(19), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kruk-Gotzman, Sylwia & Ziółkowski, Paweł & Iliev, Iliya & Negreanu, Gabriel-Paul & Badur, Janusz, 2023. "Techno-economic evaluation of combined cycle gas turbine and a diabatic compressed air energy storage integration concept," Energy, Elsevier, vol. 266(C).
    2. Paweł Ziółkowski & Marta Drosińska-Komor & Jerzy Głuch & Łukasz Breńkacz, 2023. "Review of Methods for Diagnosing the Degradation Process in Power Units Cooperating with Renewable Energy Sources Using Artificial Intelligence," Energies, MDPI, vol. 16(17), pages 1-28, August.
    3. Ziółkowski, Paweł & Stasiak, Kamil & Amiri, Milad & Mikielewicz, Dariusz, 2023. "Negative carbon dioxide gas power plant integrated with gasification of sewage sludge," Energy, Elsevier, vol. 262(PB).
    4. Hyrzyński, Rafał & Ziółkowski, Paweł & Gotzman, Sylwia & Kraszewski, Bartosz & Ochrymiuk, Tomasz & Badur, Janusz, 2021. "Comprehensive thermodynamic analysis of the CAES system coupled with the underground thermal energy storage taking into account global, central and local level of energy conversion," Renewable Energy, Elsevier, vol. 169(C), pages 379-403.
    5. Fu, Chao & Gundersen, Truls, 2012. "Using exergy analysis to reduce power consumption in air separation units for oxy-combustion processes," Energy, Elsevier, vol. 44(1), pages 60-68.
    6. Mehrpooya, Mehdi & Moftakhari Sharifzadeh, Mohammad Mehdi & Rosen, Marc A., 2015. "Optimum design and exergy analysis of a novel cryogenic air separation process with LNG (liquefied natural gas) cold energy utilization," Energy, Elsevier, vol. 90(P2), pages 2047-2069.
    7. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    9. Tian, Ye & Zhou, Xiong & Ji, Xuanyu & Bai, Jisong & Yuan, Liang, 2019. "Applying moderate or intense low-oxygen dilution combustion to a co-axial-jet I-shaped recuperative radiant tube for further performance enhancement," Energy, Elsevier, vol. 171(C), pages 149-160.
    10. Serrano, José Ramón & Arnau, Francisco José & García-Cuevas, Luis Miguel & Gutiérrez, Fabio Alberto, 2022. "Thermo-economic analysis of an oxygen production plant powered by an innovative energy recovery system," Energy, Elsevier, vol. 255(C).
    11. Luo, Chending & Zhang, Na, 2012. "Zero CO2 emission SOLRGT power system," Energy, Elsevier, vol. 45(1), pages 312-323.
    12. Auping, Willem L. & Pruyt, Erik & de Jong, Sijbren & Kwakkel, Jan H., 2016. "The geopolitical impact of the shale revolution: Exploring consequences on energy prices and rentier states," Energy Policy, Elsevier, vol. 98(C), pages 390-399.
    13. Habib, Mohamed A. & Imteyaz, Binash & Nemitallah, Medhat A., 2020. "Second law analysis of premixed and non-premixed oxy-fuel combustion cycles utilizing oxygen separation membranes," Applied Energy, Elsevier, vol. 259(C).
    14. Eleanor Stephenson & Karena Shaw, 2013. "¨ A Dilemma of Abundance: Governance Challenges of Reconciling Shale Gas Development and Climate Change Mitigation," Sustainability, MDPI, vol. 5(5), pages 1-23, May.
    15. Shen, Peiliang & Jiang, Yi & Zhang, Yangyang & Liu, Songhui & Xuan, Dongxing & Lu, Jianxin & Zhang, Shipeng & Poon, Chi Sun, 2023. "Production of aragonite whiskers by carbonation of fine recycled concrete wastes: An alternative pathway for efficient CO2 sequestration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    16. Arnold, Gwen & Farrer, Benjamin & Holahan, Robert, 2018. "How do landowners learn about high-volume hydraulic fracturing? A survey of Eastern Ohio landowners in active or proposed drilling units," Energy Policy, Elsevier, vol. 114(C), pages 455-464.
    17. Darrick Evensen & Christopher Clarke & Richard Stedman, 2014. "A New York or Pennsylvania state of mind: social representations in newspaper coverage of gas development in the Marcellus Shale," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 4(1), pages 65-77, March.
    18. Munasib, Abdul & Rickman, Dan S., 2015. "Regional economic impacts of the shale gas and tight oil boom: A synthetic control analysis," Regional Science and Urban Economics, Elsevier, vol. 50(C), pages 1-17.
    19. Habib, Mohamed A. & Nemitallah, Medhat A. & Afaneh, Dia' Al-deen, 2018. "Numerical investigation of a hybrid polymeric-ceramic membrane unit for carbon-free oxy-combustion applications," Energy, Elsevier, vol. 147(C), pages 362-376.
    20. Puig-Arnavat, Maria & Søgaard, Martin & Hjuler, Klaus & Ahrenfeldt, Jesper & Henriksen, Ulrik Birk & Hendriksen, Peter Vang, 2015. "Integration of oxygen membranes for oxygen production in cement plants," Energy, Elsevier, vol. 91(C), pages 852-865.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2590-:d:785478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.