IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v173y2023ics1364032122009601.html
   My bibliography  Save this article

Production of aragonite whiskers by carbonation of fine recycled concrete wastes: An alternative pathway for efficient CO2 sequestration

Author

Listed:
  • Shen, Peiliang
  • Jiang, Yi
  • Zhang, Yangyang
  • Liu, Songhui
  • Xuan, Dongxing
  • Lu, Jianxin
  • Zhang, Shipeng
  • Poon, Chi Sun

Abstract

In this study, a wet carbonation method targeting high carbonation rate was developed to prepare aragonite whisker using fine recycled concrete waste (FRCW), aiming to effectively capture CO2 and convert FRCW into high-value products. The effect of operational factors, including MgCl2 concentration, temperature, CO2 concentration and duration on the formation of aragonite was systemically investigated. The results indicated this carbonation process can not only produce needle-like aragonite whisker-rich materials but also capture a large amount of CO2 (0.19 g CO2 per g FRCW) within an hour. The MgCl2 concentration and temperature were key parameters governing the nucleation of aragonite, while the formation of needle-like aragonite was favored in a MgCl2-FRCW suspension with a minimum Mg2+/Ca2+ molar ratio >0.16 at a temperature >60 °C. A lower CO2 concentration of <50% only slightly decreased the carbonation rate without affecting the types of carbonation products formed, indicating the potential to sequestrate CO2 from industrial flue gas directly. In addition, amorphous carbonation phases including silica gel, decalcified C–S–H and amorphous calcium carbonate were produced apart from the dominant reaction product-aragonite. Based on the results, the formation of aragonite could be divided into two steps: 1. The FRCW reacted with MgCl2 to form a new FRCW-MgCl2-Mg(OH)2–CaCl2 system. 2. The Ca2+ reacted with CO32− to form aragonite and brucite was solubilized back to MgCl2, resulting in possible recycling and reusing MgCl2 for another carbonation cycle. The proposed approach exhibits a novel direction of sequestering CO2.

Suggested Citation

  • Shen, Peiliang & Jiang, Yi & Zhang, Yangyang & Liu, Songhui & Xuan, Dongxing & Lu, Jianxin & Zhang, Shipeng & Poon, Chi Sun, 2023. "Production of aragonite whiskers by carbonation of fine recycled concrete wastes: An alternative pathway for efficient CO2 sequestration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
  • Handle: RePEc:eee:rensus:v:173:y:2023:i:c:s1364032122009601
    DOI: 10.1016/j.rser.2022.113079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122009601
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.113079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Omer, Abdeen Mustafa, 2008. "Energy, environment and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2265-2300, December.
    2. Marta G. Plaza & Sergio Martínez & Fernando Rubiera, 2020. "CO 2 Capture, Use, and Storage in the Cement Industry: State of the Art and Expectations," Energies, MDPI, vol. 13(21), pages 1-28, October.
    3. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    4. Azadeh, A. & Tarverdian, S., 2007. "Integration of genetic algorithm, computer simulation and design of experiments for forecasting electrical energy consumption," Energy Policy, Elsevier, vol. 35(10), pages 5229-5241, October.
    5. Köne, Aylin Çigdem & Büke, Tayfun, 2010. "Forecasting of CO2 emissions from fuel combustion using trend analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2906-2915, December.
    6. Rahman, Farahiyah Abdul & Aziz, Md Maniruzzaman A. & Saidur, R. & Bakar, Wan Azelee Wan Abu & Hainin, M.R & Putrajaya, Ramadhansyah & Hassan, Norhidayah Abdul, 2017. "Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 112-126.
    7. Stefania Osk Gardarsdottir & Edoardo De Lena & Matteo Romano & Simon Roussanaly & Mari Voldsund & José-Francisco Pérez-Calvo & David Berstad & Chao Fu & Rahul Anantharaman & Daniel Sutter & Matteo Gaz, 2019. "Comparison of Technologies for CO 2 Capture from Cement Production—Part 2: Cost Analysis," Energies, MDPI, vol. 12(3), pages 1-20, February.
    8. Mari Voldsund & Stefania Osk Gardarsdottir & Edoardo De Lena & José-Francisco Pérez-Calvo & Armin Jamali & David Berstad & Chao Fu & Matteo Romano & Simon Roussanaly & Rahul Anantharaman & Helmut Hopp, 2019. "Comparison of Technologies for CO 2 Capture from Cement Production—Part 1: Technical Evaluation," Energies, MDPI, vol. 12(3), pages 1-33, February.
    9. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Greco-Coppi & Carina Hofmann & Diethelm Walter & Jochen Ströhle & Bernd Epple, 2023. "Negative CO2 emissions in the lime production using an indirectly heated carbonate looping process," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(6), pages 1-32, August.
    2. Simoni, Marco & Wilkes, Mathew D. & Brown, Solomon & Provis, John L. & Kinoshita, Hajime & Hanein, Theodore, 2022. "Decarbonising the lime industry: State-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Aydin, Gokhan, 2014. "Modeling of energy consumption based on economic and demographic factors: The case of Turkey with projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 382-389.
    4. Sufyanullah, Khan & Ahmad, Khan Arshad & Sufyan Ali, Muhammad Abu, 2022. "Does emission of carbon dioxide is impacted by urbanization? An empirical study of urbanization, energy consumption, economic growth and carbon emissions - Using ARDL bound testing approach," Energy Policy, Elsevier, vol. 164(C).
    5. Byung-Lip Ahn & Ji-Woo Park & Seunghwan Yoo & Jonghun Kim & Hakgeun Jeong & Seung-Bok Leigh & Cheol-Yong Jang, 2015. "Synergetic Effect between Lighting Efficiency Enhancement and Building Energy Reduction Using Alternative Thermal Operating System of Indoor LED Lighting," Energies, MDPI, vol. 8(8), pages 1-13, August.
    6. Leonel J.R. Nunes & Catarina I.R. Meireles & Carlos J. Pinto Gomes & Nuno M.C. Almeida Ribeiro, 2019. "Forest Management and Climate Change Mitigation: A Review on Carbon Cycle Flow Models for the Sustainability of Resources," Sustainability, MDPI, vol. 11(19), pages 1-10, September.
    7. Vladimir Kindra & Andrey Rogalev & Evgeny Lisin & Sergey Osipov & Olga Zlyvko, 2021. "Techno-Economic Analysis of the Oxy-Fuel Combustion Power Cycles with Near-Zero Emissions," Energies, MDPI, vol. 14(17), pages 1-22, August.
    8. Jozef Švajlenka & Mária Kozlovská, 2021. "Factors Influencing the Sustainability of Wood-Based Constructions’ Use from the Perspective of Users," Sustainability, MDPI, vol. 13(23), pages 1-16, November.
    9. Xu, Mengmeng & Lin, Boqiang & Wang, Siquan, 2021. "Towards energy conservation by improving energy efficiency? Evidence from China’s metallurgical industry," Energy, Elsevier, vol. 216(C).
    10. Haleh Boostani & Polat Hancer, 2018. "A Model for External Walls Selection in Hot and Humid Climates," Sustainability, MDPI, vol. 11(1), pages 1-23, December.
    11. Zhou, Yinbo & Li, Hansheng & Huang, Jilei & Zhang, Ruilin & Wang, Shijie & Hong, Yidu & Yang, Yongliang, 2021. "Influence of coal deformation on the Knudsen number of gas flow in coal seams," Energy, Elsevier, vol. 233(C).
    12. Azimi, Seyyed Shahabeddin & Namazi, Mohammad Hosain, 2015. "Modeling of combustion of gas oil and natural gas in a furnace: Comparison of combustion characteristics," Energy, Elsevier, vol. 93(P1), pages 458-465.
    13. Henti Hendalastuti Rachmat & Kirsfianti Linda Ginoga & Yunita Lisnawati & Asep Hidayat & Rinaldi Imanuddin & Rizki Ary Fambayun & Kusumadewi Sri Yulita & Arida Susilowati, 2021. "Generating Multifunctional Landscape through Reforestation with Native Trees in the Tropical Region: A Case Study of Gunung Dahu Research Forest, Bogor, Indonesia," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
    14. Elena Arce, María & Saavedra, Ángeles & Míguez, José L. & Granada, Enrique, 2015. "The use of grey-based methods in multi-criteria decision analysis for the evaluation of sustainable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 924-932.
    15. Griffiths, Steve & Sovacool, Benjamin K. & Furszyfer Del Rio, Dylan D. & Foley, Aoife M. & Bazilian, Morgan D. & Kim, Jinsoo & Uratani, Joao M., 2023. "Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    16. Atherton, John & Xie, Wanni & Aditya, Leonardus Kevin & Zhou, Xiaochi & Karmakar, Gourab & Akroyd, Jethro & Mosbach, Sebastian & Lim, Mei Qi & Kraft, Markus, 2021. "How does a carbon tax affect Britain’s power generation composition?," Applied Energy, Elsevier, vol. 298(C).
    17. Subraveti, Sai Gokul & Roussanaly, Simon & Anantharaman, Rahul & Riboldi, Luca & Rajendran, Arvind, 2022. "How much can novel solid sorbents reduce the cost of post-combustion CO2 capture? A techno-economic investigation on the cost limits of pressure–vacuum swing adsorption," Applied Energy, Elsevier, vol. 306(PA).
    18. Ying, Zhou & Xin-gang, Zhao, 2021. "The impact of Renewable Portfolio Standards on carbon emission trading under the background of China’s electricity marketization reform," Energy, Elsevier, vol. 226(C).
    19. Wahiba Yaïci & Evgueniy Entchev & Michela Longo, 2022. "Recent Advances in Small-Scale Carbon Capture Systems for Micro-Combined Heat and Power Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    20. Thiyagarajan, Subramanian & Varuvel, Edwin Geo & Martin, Leenus Jesu & Beddhannan, Nagalingam, 2019. "Mitigation of carbon footprints through a blend of biofuels and oxygenates, combined with post-combustion capture system in a single cylinder CI engine," Renewable Energy, Elsevier, vol. 130(C), pages 1067-1081.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:173:y:2023:i:c:s1364032122009601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.