IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p559-d205039.html
   My bibliography  Save this article

Comparison of Technologies for CO 2 Capture from Cement Production—Part 1: Technical Evaluation

Author

Listed:
  • Mari Voldsund

    (SINTEF Energy Research, 7465 Trondheim, Norway)

  • Stefania Osk Gardarsdottir

    (SINTEF Energy Research, 7465 Trondheim, Norway)

  • Edoardo De Lena

    (Politecnico di Milano, Department of Energy, 20156 Milan, Italy)

  • José-Francisco Pérez-Calvo

    (ETH Zurich, Institute of Process Engineering, 8092 Zurich, Switzerland)

  • Armin Jamali

    (VDZ gGmbH, 40476 Düsseldorf, Germany)

  • David Berstad

    (SINTEF Energy Research, 7465 Trondheim, Norway)

  • Chao Fu

    (SINTEF Energy Research, 7465 Trondheim, Norway)

  • Matteo Romano

    (Politecnico di Milano, Department of Energy, 20156 Milan, Italy)

  • Simon Roussanaly

    (SINTEF Energy Research, 7465 Trondheim, Norway)

  • Rahul Anantharaman

    (SINTEF Energy Research, 7465 Trondheim, Norway)

  • Helmut Hoppe

    (VDZ gGmbH, 40476 Düsseldorf, Germany)

  • Daniel Sutter

    (ETH Zurich, Institute of Process Engineering, 8092 Zurich, Switzerland)

  • Marco Mazzotti

    (ETH Zurich, Institute of Process Engineering, 8092 Zurich, Switzerland)

  • Matteo Gazzani

    (Utrecht University, Copernicus Institute of Sustainable Development, 3584 CB Utrecht, The Netherlands)

  • Giovanni Cinti

    (Italcementi Heidelberg Group, 24126 Bergamo, Italy)

  • Kristin Jordal

    (SINTEF Energy Research, 7465 Trondheim, Norway)

Abstract

A technical evaluation of CO 2 capture technologies when retrofitted to a cement plant is performed. The investigated technologies are the oxyfuel process, the chilled ammonia process, membrane-assisted CO 2 liquefaction, and the calcium looping process with tail-end and integrated configurations. For comparison, absorption with monoethanolamine (MEA) is used as reference technology. The focus of the evaluation is on emission abatement, energy performance, and retrofitability. All the investigated technologies perform better than the reference both in terms of emission abatement and energy consumption. The equivalent CO 2 avoided are 73–90%, while it is 64% for MEA, considering the average EU-28 electricity mix. The specific primary energy consumption for CO 2 avoided is 1.63–4.07 MJ/kg CO 2 , compared to 7.08 MJ/kg CO 2 for MEA. The calcium looping technologies have the highest emission abatement potential, while the oxyfuel process has the best energy performance. When it comes to retrofitability, the post-combustion technologies show significant advantages compared to the oxyfuel and to the integrated calcium looping technologies. Furthermore, the performance of the individual technologies shows strong dependencies on site-specific and plant-specific factors. Therefore, rather than identifying one single best technology, it is emphasized that CO 2 capture in the cement industry should be performed with a portfolio of capture technologies, where the preferred choice for each specific plant depends on local factors.

Suggested Citation

  • Mari Voldsund & Stefania Osk Gardarsdottir & Edoardo De Lena & José-Francisco Pérez-Calvo & Armin Jamali & David Berstad & Chao Fu & Matteo Romano & Simon Roussanaly & Rahul Anantharaman & Helmut Hopp, 2019. "Comparison of Technologies for CO 2 Capture from Cement Production—Part 1: Technical Evaluation," Energies, MDPI, vol. 12(3), pages 1-33, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:559-:d:205039
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/559/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/559/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takuma Watari & André Cabrera Serrenho & Lukas Gast & Jonathan Cullen & Julian Allwood, 2023. "Feasible supply of steel and cement within a carbon budget is likely to fall short of expected global demand," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Subraveti, Sai Gokul & Roussanaly, Simon & Anantharaman, Rahul & Riboldi, Luca & Rajendran, Arvind, 2022. "How much can novel solid sorbents reduce the cost of post-combustion CO2 capture? A techno-economic investigation on the cost limits of pressure–vacuum swing adsorption," Applied Energy, Elsevier, vol. 306(PA).
    3. Grzegorz Ludwik Golewski, 2022. "Combined Effect of Coal Fly Ash (CFA) and Nanosilica (nS) on the Strength Parameters and Microstructural Properties of Eco-Friendly Concrete," Energies, MDPI, vol. 16(1), pages 1-16, December.
    4. Martin Greco-Coppi & Carina Hofmann & Diethelm Walter & Jochen Ströhle & Bernd Epple, 2023. "Negative CO2 emissions in the lime production using an indirectly heated carbonate looping process," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(6), pages 1-32, August.
    5. Paweł Ziółkowski & Stanisław Głuch & Piotr Józef Ziółkowski & Janusz Badur, 2022. "Compact High Efficiency and Zero-Emission Gas-Fired Power Plant with Oxy-Combustion and Carbon Capture," Energies, MDPI, vol. 15(7), pages 1-39, April.
    6. Chauvy, Remi & Dubois, Lionel & Lybaert, Paul & Thomas, Diane & De Weireld, Guy, 2020. "Production of synthetic natural gas from industrial carbon dioxide," Applied Energy, Elsevier, vol. 260(C).
    7. Shen, Peiliang & Jiang, Yi & Zhang, Yangyang & Liu, Songhui & Xuan, Dongxing & Lu, Jianxin & Zhang, Shipeng & Poon, Chi Sun, 2023. "Production of aragonite whiskers by carbonation of fine recycled concrete wastes: An alternative pathway for efficient CO2 sequestration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    8. Sun, Xiaolong & Alcalde, Juan & Bakhtbidar, Mahdi & Elío, Javier & Vilarrasa, Víctor & Canal, Jacobo & Ballesteros, Julio & Heinemann, Niklas & Haszeldine, Stuart & Cavanagh, Andrew & Vega-Maza, David, 2021. "Hubs and clusters approach to unlock the development of carbon capture and storage – Case study in Spain," Applied Energy, Elsevier, vol. 300(C).
    9. Grzegorz Ludwik Golewski, 2021. "Green Concrete Based on Quaternary Binders with Significant Reduced of CO 2 Emissions," Energies, MDPI, vol. 14(15), pages 1-18, July.
    10. Marta G. Plaza & Sergio Martínez & Fernando Rubiera, 2020. "CO 2 Capture, Use, and Storage in the Cement Industry: State of the Art and Expectations," Energies, MDPI, vol. 13(21), pages 1-28, October.
    11. Simoni, Marco & Wilkes, Mathew D. & Brown, Solomon & Provis, John L. & Kinoshita, Hajime & Hanein, Theodore, 2022. "Decarbonising the lime industry: State-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:559-:d:205039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.