IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1948-d766038.html
   My bibliography  Save this article

Entrained Flow Plasma Gasification of Sewage Sludge–Proof-of-Concept and Fate of Inorganics

Author

Listed:
  • Vishwajeet

    (Department of Energy Conversion Engineering, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland)

  • Halina Pawlak-Kruczek

    (Department of Energy Conversion Engineering, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland)

  • Marcin Baranowski

    (Department of Energy Conversion Engineering, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland)

  • Michał Czerep

    (Department of Energy Conversion Engineering, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland)

  • Artur Chorążyczewski

    (Department of Automatic Control, Faculty of Electronics, Mechatronics and Control Systems, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland)

  • Krystian Krochmalny

    (Department of Energy Conversion Engineering, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland)

  • Michał Ostrycharczyk

    (Department of Energy Conversion Engineering, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland)

  • Paweł Ziółkowski

    (Faculty of Mechanical Engineering and Ship Technology, Institute of Energy, Gdańsk University of Technology, 80-233 Gdańsk, Poland)

  • Paweł Madejski

    (Department of Power Systems and Environmental Protection Facilities, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, 30-059 Kraków, Poland)

  • Tadeusz Mączka

    (Institute of Power Systems Automation, 51-618 Wrocław, Poland)

  • Amit Arora

    (Department of Chemical Engineering, Shaheed Bhagat Singh State University, Ferozepur 152004, Punjab, India)

  • Tomasz Hardy

    (Department of Energy Conversion Engineering, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland)

  • Lukasz Niedzwiecki

    (Department of Energy Conversion Engineering, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland)

  • Janusz Badur

    (Energy Conversion Department, Institute of Fluid Flow Machinery, Polish Academy of Sciences, 80-231 Gdańsk, Poland)

  • Dariusz Mikielewicz

    (Faculty of Mechanical Engineering and Ship Technology, Institute of Energy, Gdańsk University of Technology, 80-233 Gdańsk, Poland)

Abstract

Sewage sludge is a residue of wastewater processing that is biologically active and consists of water, organic matter, including dead and living pathogens, polycyclic aromatic hydrocarbons, and heavy metals, as well as organic and inorganic pollutants. Landfilling is on the decline, giving way to more environmentally friendly utilisation routes. This paper presents the results of a two-stage gasification–vitrification system, using a prototype-entrained flow plasma-assisted gasification reactor along with ex situ plasma vitrification. The results show that the use of plasma has a considerable influence on the quality of gas, with a higher heating value of dry gas exceeding 7.5 MJ/m N 3 , excluding nitrogen dilution. However, dilution from plasma gases becomes the main problem, giving a lower heating value of dry gas with the highest value being 5.36 MJ/m N 3 when dilution by nitrogen from plasma torches is taken into account. An analysis of the residues showed a very low leaching inclination of ex-situ vitrified residues. This suggests that such a system could be used to avoid the problem of landfilling significant amounts of ash from sewage sludge incineration by turning inorganic residues into a by-product that has potential use as a construction aggregate.

Suggested Citation

  • Vishwajeet & Halina Pawlak-Kruczek & Marcin Baranowski & Michał Czerep & Artur Chorążyczewski & Krystian Krochmalny & Michał Ostrycharczyk & Paweł Ziółkowski & Paweł Madejski & Tadeusz Mączka & Amit A, 2022. "Entrained Flow Plasma Gasification of Sewage Sludge–Proof-of-Concept and Fate of Inorganics," Energies, MDPI, vol. 15(5), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1948-:d:766038
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1948/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1948/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Natalia Milojevic & Agnieszka Cydzik-Kwiatkowska, 2021. "Agricultural Use of Sewage Sludge as a Threat of Microplastic (MP) Spread in the Environment and the Role of Governance," Energies, MDPI, vol. 14(19), pages 1-16, October.
    2. Halina Pawlak-Kruczek & Mateusz Wnukowski & Lukasz Niedzwiecki & Michał Czerep & Mateusz Kowal & Krystian Krochmalny & Jacek Zgóra & Michał Ostrycharczyk & Marcin Baranowski & Wilhelm Jan Tic & Joanna, 2019. "Torrefaction as a Valorization Method Used Prior to the Gasification of Sewage Sludge," Energies, MDPI, vol. 12(1), pages 1-18, January.
    3. Sitka, Andrzej & Szulc, Piotr & Smykowski, Daniel & Jodkowski, Wiesław, 2021. "Application of poultry manure as an energy resource by its gasification in a prototype rotary counterflow gasifier," Renewable Energy, Elsevier, vol. 175(C), pages 422-429.
    4. Aragón-Briceño, C.I. & Grasham, O. & Ross, A.B. & Dupont, V. & Camargo-Valero, M.A., 2020. "Hydrothermal carbonization of sewage digestate at wastewater treatment works: Influence of solid loading on characteristics of hydrochar, process water and plant energetics," Renewable Energy, Elsevier, vol. 157(C), pages 959-973.
    5. Sebastian Werle, 2015. "Gasification of a Dried Sewage Sludge in a Laboratory Scale Fixed Bed Reactor," Energies, MDPI, vol. 8(8), pages 1-11, August.
    6. Aragón-Briceño, C.I. & Ross, A.B. & Camargo-Valero, M.A., 2021. "Mass and energy integration study of hydrothermal carbonization with anaerobic digestion of sewage sludge," Renewable Energy, Elsevier, vol. 167(C), pages 473-483.
    7. Dávid Nagy & Péter Balogh & Zoltán Gabnai & József Popp & Judit Oláh & Attila Bai, 2018. "Economic Analysis of Pellet Production in Co-Digestion Biogas Plants," Energies, MDPI, vol. 11(5), pages 1-21, May.
    8. Ziółkowski, Paweł & Badur, Janusz & Pawlak- Kruczek, Halina & Stasiak, Kamil & Amiri, Milad & Niedzwiecki, Lukasz & Krochmalny, Krystian & Mularski, Jakub & Madejski, Paweł & Mikielewicz, Dariusz, 2022. "Mathematical modelling of gasification process of sewage sludge in reactor of negative CO2 emission power plant," Energy, Elsevier, vol. 244(PA).
    9. Andrzej Sitka & Wiesław Jodkowski & Piotr Szulc & Daniel Smykowski & Bogusław Szumiło, 2021. "Study of the Properties and Particulate Matter Content of the Gas from the Innovative Pilot-Scale Gasification Installation with Integrated Ceramic Filter," Energies, MDPI, vol. 14(22), pages 1-11, November.
    10. Czerwińska, Klaudia & Śliz, Maciej & Wilk, Małgorzata, 2022. "Hydrothermal carbonization process: Fundamentals, main parameter characteristics and possible applications including an effective method of SARS-CoV-2 mitigation in sewage sludge. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. Wang, Shule & Mandfloen, Per & Jönsson, Pär & Yang, Weihong, 2021. "Synergistic effects in the copyrolysis of municipal sewage sludge digestate and salix: Reaction mechanism, product characterization and char stability," Applied Energy, Elsevier, vol. 289(C).
    12. Jakub Mularski & Norbert Modliński, 2020. "Impact of Chemistry–Turbulence Interaction Modeling Approach on the CFD Simulations of Entrained Flow Coal Gasification," Energies, MDPI, vol. 13(23), pages 1-25, December.
    13. Paweł Ziółkowski & Paweł Madejski & Milad Amiri & Tomasz Kuś & Kamil Stasiak & Navaneethan Subramanian & Halina Pawlak-Kruczek & Janusz Badur & Łukasz Niedźwiecki & Dariusz Mikielewicz, 2021. "Thermodynamic Analysis of Negative CO 2 Emission Power Plant Using Aspen Plus, Aspen Hysys, and Ebsilon Software," Energies, MDPI, vol. 14(19), pages 1-27, October.
    14. Sebastian Werle & Mariusz Dudziak, 2014. "Analysis of Organic and Inorganic Contaminants in Dried Sewage Sludge and By-Products of Dried Sewage Sludge Gasification," Energies, MDPI, vol. 7(1), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Ziółkowski & Marta Drosińska-Komor & Jerzy Głuch & Łukasz Breńkacz, 2023. "Review of Methods for Diagnosing the Degradation Process in Power Units Cooperating with Renewable Energy Sources Using Artificial Intelligence," Energies, MDPI, vol. 16(17), pages 1-28, August.
    2. Paweł Ziółkowski & Stanisław Głuch & Piotr Józef Ziółkowski & Janusz Badur, 2022. "Compact High Efficiency and Zero-Emission Gas-Fired Power Plant with Oxy-Combustion and Carbon Capture," Energies, MDPI, vol. 15(7), pages 1-39, April.
    3. Alberto Carotenuto & Simona Di Fraia & Nicola Massarotti & Szymon Sobek & M. Rakib Uddin & Laura Vanoli & Sebastian Werle, 2023. "Sewage Sludge Gasification Process Optimization for Combined Heat and Power Generation," Energies, MDPI, vol. 16(12), pages 1-22, June.
    4. Małgorzata Sieradzka & Agata Mlonka-Mędrala & Izabela Kalemba-Rec & Markus Reinmöller & Felix Küster & Wojciech Kalawa & Aneta Magdziarz, 2022. "Evaluation of Physical and Chemical Properties of Residue from Gasification of Biomass Wastes," Energies, MDPI, vol. 15(10), pages 1-19, May.
    5. Ziółkowski, Paweł & Stasiak, Kamil & Amiri, Milad & Mikielewicz, Dariusz, 2023. "Negative carbon dioxide gas power plant integrated with gasification of sewage sludge," Energy, Elsevier, vol. 262(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Čespiva, Jakub & Wnukowski, Mateusz & Niedzwiecki, Lukasz & Skřínský, Jan & Vereš, Ján & Ochodek, Tadeáš & Pawlak-Kruczek, Halina & Borovec, Karel, 2020. "Characterization of tars from a novel, pilot scale, biomass gasifier working under low equivalence ratio regime," Renewable Energy, Elsevier, vol. 159(C), pages 775-785.
    2. Ziółkowski, Paweł & Badur, Janusz & Pawlak- Kruczek, Halina & Stasiak, Kamil & Amiri, Milad & Niedzwiecki, Lukasz & Krochmalny, Krystian & Mularski, Jakub & Madejski, Paweł & Mikielewicz, Dariusz, 2022. "Mathematical modelling of gasification process of sewage sludge in reactor of negative CO2 emission power plant," Energy, Elsevier, vol. 244(PA).
    3. Aragon-Briceño, Christian & Pożarlik, Artur & Bramer, Eddy & Brem, Gerrit & Wang, Shule & Wen, Yuming & Yang, Weihong & Pawlak-Kruczek, Halina & Niedźwiecki, Łukasz & Urbanowska, Agnieszka & Mościcki,, 2022. "Integration of hydrothermal carbonization treatment for water and energy recovery from organic fraction of municipal solid waste digestate," Renewable Energy, Elsevier, vol. 184(C), pages 577-591.
    4. Magdziarz, Aneta & Mlonka-Mędrala, Agata & Sieradzka, Małgorzata & Aragon-Briceño, Christian & Pożarlik, Artur & Bramer, Eddy A. & Brem, Gerrit & Niedzwiecki, Łukasz & Pawlak-Kruczek, Halina, 2021. "Multiphase analysis of hydrochars obtained by anaerobic digestion of municipal solid waste organic fraction," Renewable Energy, Elsevier, vol. 175(C), pages 108-118.
    5. Ertesvåg, Ivar S. & Madejski, Paweł & Ziółkowski, Paweł & Mikielewicz, Dariusz, 2023. "Exergy analysis of a negative CO2 emission gas power plant based on water oxy-combustion of syngas from sewage sludge gasification and CCS," Energy, Elsevier, vol. 278(C).
    6. Wilhelm Jan Tic & Joanna Guziałowska-Tic & Halina Pawlak-Kruczek & Eugeniusz Woźnikowski & Adam Zadorożny & Łukasz Niedźwiecki & Mateusz Wnukowski & Krystian Krochmalny & Michał Czerep & Michał Ostryc, 2018. "Novel Concept of an Installation for Sustainable Thermal Utilization of Sewage Sludge," Energies, MDPI, vol. 11(4), pages 1-17, March.
    7. Urbanowska, Agnieszka & Niedzwiecki, Lukasz & Wnukowski, Mateusz & Aragon-Briceño, Christian & Kabsch-Korbutowicz, Małgorzata & Baranowski, Marcin & Czerep, Michał & Seruga, Przemysław & Pawlak-Krucze, 2023. "Recovery of chemical energy from retentates from cascade membrane filtration of hydrothermal carbonisation effluent," Energy, Elsevier, vol. 284(C).
    8. Halina Pawlak-Kruczek & Agnieszka Urbanowska & Lukasz Niedzwiecki & Michał Czerep & Marcin Baranowski & Christian Aragon-Briceño & Małgorzata Kabsch-Korbutowicz & Amit Arora & Przemysław Seruga & Mate, 2023. "Hydrothermal Carbonisation as Treatment for Effective Moisture Removal from Digestate—Mechanical Dewatering, Flashing-Off, and Condensates’ Processing," Energies, MDPI, vol. 16(13), pages 1-9, July.
    9. Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
    10. Agnieszka Urbanowska & Małgorzata Kabsch-Korbutowicz & Christian Aragon-Briceño & Mateusz Wnukowski & Artur Pożarlik & Lukasz Niedzwiecki & Marcin Baranowski & Michał Czerep & Przemysław Seruga & Hali, 2021. "Cascade Membrane System for Separation of Water and Organics from Liquid By-Products of HTC of the Agricultural Digestate—Evaluation of Performance," Energies, MDPI, vol. 14(16), pages 1-18, August.
    11. Tomasz Hardy & Amit Arora & Halina Pawlak-Kruczek & Wojciech Rafajłowicz & Jerzy Wietrzych & Łukasz Niedźwiecki & Vishwajeet & Krzysztof Mościcki, 2021. "Non-Destructive Diagnostic Methods for Fire-Side Corrosion Risk Assessment of Industrial Scale Boilers, Burning Low Quality Solid Biofuels—A Mini Review," Energies, MDPI, vol. 14(21), pages 1-15, November.
    12. Dilvin Cebi & Melih Soner Celiktas & Hasan Sarptas, 2022. "A Review on Sewage Sludge Valorization via Hydrothermal Carbonization and Applications for Circular Economy," Circular Economy and Sustainability,, Springer.
    13. Małgorzata Sieradzka & Cezary Kirczuk & Izabela Kalemba-Rec & Agata Mlonka-Mędrala & Aneta Magdziarz, 2022. "Pyrolysis of Biomass Wastes into Carbon Materials," Energies, MDPI, vol. 15(5), pages 1-12, March.
    14. Simona Di Fraia & M. Rakib Uddin, 2022. "Energy Recovery from Waste Paper and Deinking Sludge to Support the Demand of the Paper Industry: A Numerical Analysis," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    15. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    16. Ziółkowski, Paweł & Stasiak, Kamil & Amiri, Milad & Mikielewicz, Dariusz, 2023. "Negative carbon dioxide gas power plant integrated with gasification of sewage sludge," Energy, Elsevier, vol. 262(PB).
    17. Zhang, Zhe & Liu, Congmin & Liu, Wei & Du, Xu & Cui, Yong & Gong, Jian & Guo, Hua & Deng, Yulin, 2017. "Direct conversion of sewage sludge to electricity using polyoxomatelate catalyzed flow fuel cell," Energy, Elsevier, vol. 141(C), pages 1019-1026.
    18. Won-Kyu Kim & Hanbai Park & Kazuei Ishii & Geun-Yong Ham, 2023. "Investigation on Microplastics in Soil near Landfills in the Republic of Korea," Sustainability, MDPI, vol. 15(15), pages 1-14, August.
    19. Dinko Đurđević & Saša Žiković & Tomislav Čop, 2022. "Socio-Economic, Technical and Environmental Indicators for Sustainable Sewage Sludge Management and LEAP Analysis of Emissions Reduction," Energies, MDPI, vol. 15(16), pages 1-15, August.
    20. Sanaye, Sepehr & Alizadeh, Pouria & Yazdani, Mohsen, 2022. "Thermo-economic analysis of syngas production from wet digested sewage sludge by gasification process," Renewable Energy, Elsevier, vol. 190(C), pages 524-539.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1948-:d:766038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.