IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7132-d669726.html
   My bibliography  Save this article

Non-Destructive Diagnostic Methods for Fire-Side Corrosion Risk Assessment of Industrial Scale Boilers, Burning Low Quality Solid Biofuels—A Mini Review

Author

Listed:
  • Tomasz Hardy

    (Department of Energy Conversion Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland)

  • Amit Arora

    (Department of Chemical Engineering, Shaheed Bhagat Singh State University, Ferozepur 152004, India)

  • Halina Pawlak-Kruczek

    (Department of Energy Conversion Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland)

  • Wojciech Rafajłowicz

    (Department of Automation, Mechatronics and Control Systems, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland)

  • Jerzy Wietrzych

    (Department of Automation, Mechatronics and Control Systems, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland)

  • Łukasz Niedźwiecki

    (Department of Energy Conversion Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland)

  • Vishwajeet

    (Department of Energy Conversion Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland)

  • Krzysztof Mościcki

    (Department of Energy Conversion Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland)

Abstract

The use of low-emission combustion technologies in power boilers has contributed to a significant increase in the rate of high-temperature corrosion in boilers and increased risk of failure. The use of low quality biomass and waste, caused by the current policies pressing on the decarbonization of the energy generation sector, might exacerbate this problem. Additionally, all of the effects of the valorization techniques on the inorganic fraction of the solid fuel have become an additional uncertainty. As a result, fast and reliable corrosion diagnostic techniques are slowly becoming a necessity to maintain the security of the energy supply for the power grid. Non-destructive testing methods (NDT) are helpful in detecting these threats. The most important NDT methods, which can be used to assess the degree of corrosion of boiler tubes, detection of the tubes’ surface roughness and the internal structural defects, have been presented in the paper. The idea of the use of optical techniques in the initial diagnosis of boiler evaporators’ surface conditions has also been presented.

Suggested Citation

  • Tomasz Hardy & Amit Arora & Halina Pawlak-Kruczek & Wojciech Rafajłowicz & Jerzy Wietrzych & Łukasz Niedźwiecki & Vishwajeet & Krzysztof Mościcki, 2021. "Non-Destructive Diagnostic Methods for Fire-Side Corrosion Risk Assessment of Industrial Scale Boilers, Burning Low Quality Solid Biofuels—A Mini Review," Energies, MDPI, vol. 14(21), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7132-:d:669726
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7132/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7132/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aragón-Briceño, C.I. & Grasham, O. & Ross, A.B. & Dupont, V. & Camargo-Valero, M.A., 2020. "Hydrothermal carbonization of sewage digestate at wastewater treatment works: Influence of solid loading on characteristics of hydrochar, process water and plant energetics," Renewable Energy, Elsevier, vol. 157(C), pages 959-973.
    2. Szymon Szufa & Grzegorz Wielgosiński & Piotr Piersa & Justyna Czerwińska & Maria Dzikuć & Łukasz Adrian & Wiktoria Lewandowska & Marta Marczak, 2020. "Torrefaction of Straw from Oats and Maize for Use as a Fuel and Additive to Organic Fertilizers—TGA Analysis, Kinetics as Products for Agricultural Purposes," Energies, MDPI, vol. 13(8), pages 1-30, April.
    3. Wilk, Małgorzata & Magdziarz, Aneta & Kalemba-Rec, Izabela & Szymańska-Chargot, Monika, 2020. "Upgrading of green waste into carbon-rich solid biofuel by hydrothermal carbonization: The effect of process parameters on hydrochar derived from acacia," Energy, Elsevier, vol. 202(C).
    4. Aragón-Briceño, C.I. & Ross, A.B. & Camargo-Valero, M.A., 2021. "Mass and energy integration study of hydrothermal carbonization with anaerobic digestion of sewage sludge," Renewable Energy, Elsevier, vol. 167(C), pages 473-483.
    5. Marcin Jewiarz & Marek Wróbel & Krzysztof Mudryk & Szymon Szufa, 2020. "Impact of the Drying Temperature and Grinding Technique on Biomass Grindability," Energies, MDPI, vol. 13(13), pages 1-22, July.
    6. Mindaugas Kulokas & Marius Praspaliauskas & Nerijus Pedišius, 2021. "Investigation of Buckwheat Hulls as Additives in the Production of Solid Biomass Fuel from Straw," Energies, MDPI, vol. 14(2), pages 1-10, January.
    7. Wang, Liang & Skreiberg, Øyvind & Becidan, Michael & Li, Hailong, 2016. "Investigation of rye straw ash sintering characteristics and the effect of additives," Applied Energy, Elsevier, vol. 162(C), pages 1195-1204.
    8. Śliz, Maciej & Wilk, Małgorzata, 2020. "A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow," Renewable Energy, Elsevier, vol. 156(C), pages 942-950.
    9. Fiseha Tesfaye & Daniel Lindberg & Mykola Moroz & Leena Hupa, 2020. "Investigation of the K-Mg-Ca Sulfate System as Part of Monitoring Problematic Phase Formations in Renewable-Energy Power Plants," Energies, MDPI, vol. 13(20), pages 1-12, October.
    10. Mlonka-Mędrala, Agata & Gołombek, Klaudiusz & Buk, Paulina & Cieślik, Ewelina & Nowak, Wojciech, 2019. "The influence of KCl on biomass ash melting behaviour and high-temperature corrosion of low-alloy steel," Energy, Elsevier, vol. 188(C).
    11. Yuanyuan Shao & Jinsheng Wang & Fernando Preto & Jesse Zhu & Chunbao Xu, 2012. "Ash Deposition in Biomass Combustion or Co-Firing for Power/Heat Generation," Energies, MDPI, vol. 5(12), pages 1-19, December.
    12. Ketan Kumar Sandhi & Jerzy Szpunar, 2021. "Analysis of Corrosion of Hastelloy-N, Alloy X750, SS316 and SS304 in Molten Salt High-Temperature Environment," Energies, MDPI, vol. 14(3), pages 1-10, January.
    13. Aidan Mark Smith & Ugochinyere Ekpo & Andrew Barry Ross, 2020. "The Influence of pH on the Combustion Properties of Bio-Coal Following Hydrothermal Treatment of Swine Manure," Energies, MDPI, vol. 13(2), pages 1-20, January.
    14. Bergander, Mark J., 2003. "EMAT thickness measurement for tubes in coal-fired boilers," Applied Energy, Elsevier, vol. 74(3-4), pages 439-444, March.
    15. Surup, Gerrit Ralf & Leahy, James J. & Timko, Michael T. & Trubetskaya, Anna, 2020. "Hydrothermal carbonization of olive wastes to produce renewable, binder-free pellets for use as metallurgical reducing agents," Renewable Energy, Elsevier, vol. 155(C), pages 347-357.
    16. Vasiliki Tzelepi & Myrto Zeneli & Dimitrios-Sotirios Kourkoumpas & Emmanouil Karampinis & Antonios Gypakis & Nikos Nikolopoulos & Panagiotis Grammelis, 2020. "Biomass Availability in Europe as an Alternative Fuel for Full Conversion of Lignite Power Plants: A Critical Review," Energies, MDPI, vol. 13(13), pages 1-26, July.
    17. Modlinski, Norbert & Hardy, Tomasz, 2017. "Development of high-temperature corrosion risk monitoring system in pulverized coal boilers based on reducing conditions identification and CFD simulations," Applied Energy, Elsevier, vol. 204(C), pages 1124-1137.
    18. Magdziarz, Aneta & Gajek, Marcin & Nowak-Woźny, Dorota & Wilk, Małgorzata, 2018. "Mineral phase transformation of biomass ashes – Experimental and thermochemical calculations," Renewable Energy, Elsevier, vol. 128(PB), pages 446-459.
    19. Pawlak-Kruczek, Halina & Niedźwiecki, Łukasz & Ostrycharczyk, Michał & Czerep, Michał & Plutecki, Zbigniew, 2019. "Potential and methods for increasing the flexibility and efficiency of the lignite fired power unit, using integrated lignite drying," Energy, Elsevier, vol. 181(C), pages 1142-1151.
    20. Maximilian von Bohnstein & Coskun Yildiz & Lorenz Frigge & Jochen Ströhle & Bernd Epple, 2020. "Simulation Study of the Formation of Corrosive Gases in Coal Combustion in an Entrained Flow Reactor," Energies, MDPI, vol. 13(17), pages 1-24, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agnieszka Urbanowska & Małgorzata Kabsch-Korbutowicz & Christian Aragon-Briceño & Mateusz Wnukowski & Artur Pożarlik & Lukasz Niedzwiecki & Marcin Baranowski & Michał Czerep & Przemysław Seruga & Hali, 2021. "Cascade Membrane System for Separation of Water and Organics from Liquid By-Products of HTC of the Agricultural Digestate—Evaluation of Performance," Energies, MDPI, vol. 14(16), pages 1-18, August.
    2. Magdziarz, Aneta & Mlonka-Mędrala, Agata & Sieradzka, Małgorzata & Aragon-Briceño, Christian & Pożarlik, Artur & Bramer, Eddy A. & Brem, Gerrit & Niedzwiecki, Łukasz & Pawlak-Kruczek, Halina, 2021. "Multiphase analysis of hydrochars obtained by anaerobic digestion of municipal solid waste organic fraction," Renewable Energy, Elsevier, vol. 175(C), pages 108-118.
    3. Urbanowska, Agnieszka & Niedzwiecki, Lukasz & Wnukowski, Mateusz & Aragon-Briceño, Christian & Kabsch-Korbutowicz, Małgorzata & Baranowski, Marcin & Czerep, Michał & Seruga, Przemysław & Pawlak-Krucze, 2023. "Recovery of chemical energy from retentates from cascade membrane filtration of hydrothermal carbonisation effluent," Energy, Elsevier, vol. 284(C).
    4. Halina Pawlak-Kruczek & Agnieszka Urbanowska & Lukasz Niedzwiecki & Michał Czerep & Marcin Baranowski & Christian Aragon-Briceño & Małgorzata Kabsch-Korbutowicz & Amit Arora & Przemysław Seruga & Mate, 2023. "Hydrothermal Carbonisation as Treatment for Effective Moisture Removal from Digestate—Mechanical Dewatering, Flashing-Off, and Condensates’ Processing," Energies, MDPI, vol. 16(13), pages 1-9, July.
    5. Aragon-Briceño, Christian & Pożarlik, Artur & Bramer, Eddy & Brem, Gerrit & Wang, Shule & Wen, Yuming & Yang, Weihong & Pawlak-Kruczek, Halina & Niedźwiecki, Łukasz & Urbanowska, Agnieszka & Mościcki,, 2022. "Integration of hydrothermal carbonization treatment for water and energy recovery from organic fraction of municipal solid waste digestate," Renewable Energy, Elsevier, vol. 184(C), pages 577-591.
    6. Wilk, Małgorzata & Śliz, Maciej & Lubieniecki, Bogusław, 2021. "Hydrothermal co-carbonization of sewage sludge and fuel additives: Combustion performance of hydrochar," Renewable Energy, Elsevier, vol. 178(C), pages 1046-1056.
    7. Mateusz Jackowski & Łukasz Niedźwiecki & Krzysztof Mościcki & Amit Arora & Muhammad Azam Saeed & Krystian Krochmalny & Jakub Pawliczek & Anna Trusek & Magdalena Lech & Jan Skřínský & Jakub Čespiva & J, 2021. "Synergetic Co-Production of Beer Colouring Agent and Solid Fuel from Brewers’ Spent Grain in the Circular Economy Perspective," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    8. Vishwajeet & Halina Pawlak-Kruczek & Marcin Baranowski & Michał Czerep & Artur Chorążyczewski & Krystian Krochmalny & Michał Ostrycharczyk & Paweł Ziółkowski & Paweł Madejski & Tadeusz Mączka & Amit A, 2022. "Entrained Flow Plasma Gasification of Sewage Sludge–Proof-of-Concept and Fate of Inorganics," Energies, MDPI, vol. 15(5), pages 1-14, March.
    9. Ziqiang Yang & Fenghai Li & Mingjie Ma & Xuefei Liu & Hongli Fan & Zhenzhu Li & Yong Wang & Yitian Fang, 2023. "Regulation Mechanism of Solid Waste on Ash Fusion Characteristics of Sorghum Straw under O 2 /CO 2 Atmosphere," Energies, MDPI, vol. 16(20), pages 1-17, October.
    10. Katarzyna Ławińska & Szymon Szufa & Andrzej Obraniak & Tomasz Olejnik & Robert Siuda & Jerzy Kwiatek & Dominika Ogrodowczyk, 2020. "Disc Granulation Process of Carbonation Lime Mud as a Method of Post-Production Waste Management," Energies, MDPI, vol. 13(13), pages 1-14, July.
    11. Aaron E. Brown & Jessica M. M. Adams & Oliver R. Grasham & Miller Alonso Camargo-Valero & Andrew B. Ross, 2020. "An Assessment of Different Integration Strategies of Hydrothermal Carbonisation and Anaerobic Digestion of Water Hyacinth," Energies, MDPI, vol. 13(22), pages 1-26, November.
    12. Krystian Krochmalny & Halina Pawlak-Kruczek & Norbert Skoczylas & Mateusz Kudasik & Aleksandra Gajda & Renata Gnatowska & Monika Serafin-Tkaczuk & Tomasz Czapka & Amit K. Jaiswal & Vishwajeet & Amit A, 2022. "Use of Hydrothermal Carbonization and Cold Atmospheric Plasma for Surface Modification of Brewer’s Spent Grain and Activated Carbon," Energies, MDPI, vol. 15(12), pages 1-11, June.
    13. Czerwińska, Klaudia & Śliz, Maciej & Wilk, Małgorzata, 2022. "Hydrothermal carbonization process: Fundamentals, main parameter characteristics and possible applications including an effective method of SARS-CoV-2 mitigation in sewage sludge. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    14. Krzysztof Mudryk & Marcin Jewiarz & Marek Wróbel & Marcin Niemiec & Arkadiusz Dyjakon, 2021. "Evaluation of Urban Tree Leaf Biomass-Potential, Physico-Mechanical and Chemical Parameters of Raw Material and Solid Biofuel," Energies, MDPI, vol. 14(4), pages 1-14, February.
    15. Tomasz Noszczyk & Arkadiusz Dyjakon & Jacek A. Koziel, 2021. "Kinetic Parameters of Nut Shells Pyrolysis," Energies, MDPI, vol. 14(3), pages 1-22, January.
    16. Míguez, José Luis & Porteiro, Jacobo & Behrendt, Frank & Blanco, Diana & Patiño, David & Dieguez-Alonso, Alba, 2021. "Review of the use of additives to mitigate operational problems associated with the combustion of biomass with high content in ash-forming species," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    17. Barbara Mendecka & Giovanni Di Ilio & Lidia Lombardi, 2020. "Thermo-Fluid Dynamic and Kinetic Modeling of Hydrothermal Carbonization of Olive Pomace in a Batch Reactor," Energies, MDPI, vol. 13(16), pages 1-16, August.
    18. Joanna Mikusińska & Monika Kuźnia & Klaudia Czerwińska & Małgorzata Wilk, 2023. "Hydrothermal Carbonization of Digestate Produced in the Biogas Production Process," Energies, MDPI, vol. 16(14), pages 1-18, July.
    19. Wilk, Małgorzata & Śliz, Maciej & Gajek, Marcin, 2021. "The effects of hydrothermal carbonization operating parameters on high-value hydrochar derived from beet pulp," Renewable Energy, Elsevier, vol. 177(C), pages 216-228.
    20. Gao, Ningbo & Śliz, Maciej & Quan, Cui & Bieniek, Artur & Magdziarz, Aneta, 2021. "Biomass CO2 gasification with CaO looping for syngas production in a fixed-bed reactor," Renewable Energy, Elsevier, vol. 167(C), pages 652-661.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7132-:d:669726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.