IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4523-d407125.html
   My bibliography  Save this article

Simulation Study of the Formation of Corrosive Gases in Coal Combustion in an Entrained Flow Reactor

Author

Listed:
  • Maximilian von Bohnstein

    (Institute for Energy Systems and Technology, Technische Universitat Darmstadt, 64289 Darmstadt, Germany)

  • Coskun Yildiz

    (Institute for Energy Systems and Technology, Technische Universitat Darmstadt, 64289 Darmstadt, Germany)

  • Lorenz Frigge

    (Institute for Energy Systems and Technology, Technische Universitat Darmstadt, 64289 Darmstadt, Germany)

  • Jochen Ströhle

    (Institute for Energy Systems and Technology, Technische Universitat Darmstadt, 64289 Darmstadt, Germany)

  • Bernd Epple

    (Institute for Energy Systems and Technology, Technische Universitat Darmstadt, 64289 Darmstadt, Germany)

Abstract

Gaseous sulfur species play a major role in high temperature corrosion of pulverized coal fired furnaces. The prediction of sulfur species concentrations by 3D-Computational Fluid Dynamics (CFD) simulation allows the identification of furnace wall regions that are exposed to corrosive gases, so that countermeasures against corrosion can be applied. In the present work, a model for the release of sulfur and chlorine species during coal combustion is presented. The model is based on the mineral matter transformation of sulfur and chlorine bearing minerals under coal combustion conditions. The model is appended to a detailed reaction mechanism for gaseous sulfur and chlorine species and hydrocarbon related reactions, as well as a global three-step mechanism for coal devolatilization, char combustion, and char gasification. Experiments in an entrained flow were carried out to validate the developed model. Three-dimensional numerical simulations of an entrained flow reactor were performed by CFD using the developed model. Calculated concentrations of SO 2 , H 2 S, COS, and HCl showed good agreement with the measurements. Hence, the developed model can be regarded as a reliable method for the prediction of corrosive sulfur and chlorine species in coal fired furnaces. Further improvement is needed in the prediction of some minor trace species.

Suggested Citation

  • Maximilian von Bohnstein & Coskun Yildiz & Lorenz Frigge & Jochen Ströhle & Bernd Epple, 2020. "Simulation Study of the Formation of Corrosive Gases in Coal Combustion in an Entrained Flow Reactor," Energies, MDPI, vol. 13(17), pages 1-24, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4523-:d:407125
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4523/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4523/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Modlinski, Norbert & Hardy, Tomasz, 2017. "Development of high-temperature corrosion risk monitoring system in pulverized coal boilers based on reducing conditions identification and CFD simulations," Applied Energy, Elsevier, vol. 204(C), pages 1124-1137.
    2. Stroh, Alexander & Alobaid, Falah & Busch, Jan-Peter & Ströhle, Jochen & Epple, Bernd, 2015. "3-D numerical simulation for co-firing of torrefied biomass in a pulverized-fired 1 MWth combustion chamber," Energy, Elsevier, vol. 85(C), pages 105-116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Coskun Yildiz & Marcel Richter & Jochen Ströhle & Bernd Epple, 2023. "Release of Sulfur and Chlorine Gas Species during Combustion and Pyrolysis of Walnut Shells in an Entrained Flow Reactor," Energies, MDPI, vol. 16(15), pages 1-18, July.
    2. Tomasz Hardy & Amit Arora & Halina Pawlak-Kruczek & Wojciech Rafajłowicz & Jerzy Wietrzych & Łukasz Niedźwiecki & Vishwajeet & Krzysztof Mościcki, 2021. "Non-Destructive Diagnostic Methods for Fire-Side Corrosion Risk Assessment of Industrial Scale Boilers, Burning Low Quality Solid Biofuels—A Mini Review," Energies, MDPI, vol. 14(21), pages 1-15, November.
    3. Marek Sciazko & Aleksander Sobolewski, 2021. "Special Issue [Energies] “Clean Utilization and Conversion Technology of Coal”," Energies, MDPI, vol. 14(15), pages 1-3, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    2. Alobaid, Falah & Ohlemüller, Peter & Ströhle, Jochen & Epple, Bernd, 2015. "Extended Euler–Euler model for the simulation of a 1 MWth chemical–looping pilot plant," Energy, Elsevier, vol. 93(P2), pages 2395-2405.
    3. Tomasz Hardy & Sławomir Kakietek & Krzysztof Halawa & Krzysztof Mościcki & Tomasz Janda, 2020. "Determination of High Temperature Corrosion Rates of Steam Boiler Evaporators Using Continuous Measurements of Flue Gas Composition and Neural Networks," Energies, MDPI, vol. 13(12), pages 1-17, June.
    4. Yin, Chungen, 2020. "Development in biomass preparation for suspension firing towards higher biomass shares and better boiler performance and fuel rangeability," Energy, Elsevier, vol. 196(C).
    5. Ali Cemal Benim & Cansu Deniz Canal & Yakup Erhan Boke, 2021. "A Validation Study for RANS Based Modelling of Swirling Pulverized Fuel Flames," Energies, MDPI, vol. 14(21), pages 1-33, November.
    6. Jakub Mularski & Norbert Modliński, 2020. "Impact of Chemistry–Turbulence Interaction Modeling Approach on the CFD Simulations of Entrained Flow Coal Gasification," Energies, MDPI, vol. 13(23), pages 1-25, December.
    7. Tomasz Hardy & Amit Arora & Halina Pawlak-Kruczek & Wojciech Rafajłowicz & Jerzy Wietrzych & Łukasz Niedźwiecki & Vishwajeet & Krzysztof Mościcki, 2021. "Non-Destructive Diagnostic Methods for Fire-Side Corrosion Risk Assessment of Industrial Scale Boilers, Burning Low Quality Solid Biofuels—A Mini Review," Energies, MDPI, vol. 14(21), pages 1-15, November.
    8. Szufa, S. & Piersa, P. & Junga, R. & Błaszczuk, A. & Modliński, N. & Sobek, S. & Marczak-Grzesik, M. & Adrian, Ł. & Dzikuć, M., 2023. "Numerical modeling of the co-firing process of an in situ steam-torrefied biomass with coal in a 230 MW industrial-scale boiler," Energy, Elsevier, vol. 263(PE).
    9. Ramos, Ana & Monteiro, Eliseu & Silva, Valter & Rouboa, Abel, 2018. "Co-gasification and recent developments on waste-to-energy conversion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 380-398.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4523-:d:407125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.