IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i12p3011-d1673232.html
   My bibliography  Save this article

Combustion Utilization of High-Chlorine Coal: Current Status and Future Prospects

Author

Listed:
  • Kang Hong

    (School of Electrical Engineering, Xinjiang University, Urumqi 830017, China
    Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Tuo Zhou

    (Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Man Zhang

    (Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Yuyang Zeng

    (School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Weicheng Li

    (Dongfang Boiler Co., Ltd., Dongfang Electric Group, Zigong 643099, China)

  • Hairui Yang

    (School of Electrical Engineering, Xinjiang University, Urumqi 830017, China)

Abstract

Under China’s “dual carbon” goals (carbon peaking and carbon neutrality), the utilization of high-chlorine coal faces significant challenges due to its abundant reserves in regions such as Xinjiang and its notable environmental impacts. This study systematically investigates the combustion characteristics, environmental risks, and control strategies for high-chlorine coal. Key findings reveal that chlorine release occurs in three distinct stages, namely low-temperature desorption, medium-temperature organic bond cleavage, and high-temperature inorganic decomposition, with release kinetics governed by coal metamorphism and the reaction atmosphere. Chlorine synergistically enhances mercury oxidation through low-activation-energy pathways but exacerbates boiler corrosion via chloride–sulfate interactions. Advanced control technologies—such as water washing, calcium-based sorbents, and integrated pyrolysis–gasification systems—demonstrate substantial emission reductions. However, challenges remain in addressing high-temperature corrosion and optimizing multi-pollutant synergistic control. This study provides critical insights into the clean utilization of high-chlorine coal, supporting sustainable energy transitions.

Suggested Citation

  • Kang Hong & Tuo Zhou & Man Zhang & Yuyang Zeng & Weicheng Li & Hairui Yang, 2025. "Combustion Utilization of High-Chlorine Coal: Current Status and Future Prospects," Energies, MDPI, vol. 18(12), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3011-:d:1673232
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/12/3011/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/12/3011/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Yacheng & Fan, Weidong & Guo, Hao, 2020. "A calculation model for the overall process of high temperature corrosion mechanism induced by firing coal with high chlorine and sodium content," Energy, Elsevier, vol. 205(C).
    2. Hui Fan & Menglin Ren & Caiyun Feng & Yue Jiao & Yonghui Bai & Qingxiang Ma, 2022. "Pyrolysis Characteristics of Hailar Lignite in the Presence of Polyvinyl Chloride: Products Distribution and Chlorine Migration," Energies, MDPI, vol. 15(9), pages 1-12, May.
    3. Danuta Król & Przemysław Motyl & Sławomir Poskrobko, 2022. "Chlorine Corrosion in a Low-Power Boiler Fired with Agricultural Biomass," Energies, MDPI, vol. 15(1), pages 1-19, January.
    4. Qiang Lyu & Chang’an Wang & Xuan Liu & Defu Che, 2022. "Numerical Study on the Homogeneous Reactions of Mercury in a 600 MW Coal-Fired Utility Boiler," Energies, MDPI, vol. 15(2), pages 1-16, January.
    5. Maximilian von Bohnstein & Coskun Yildiz & Lorenz Frigge & Jochen Ströhle & Bernd Epple, 2020. "Simulation Study of the Formation of Corrosive Gases in Coal Combustion in an Entrained Flow Reactor," Energies, MDPI, vol. 13(17), pages 1-24, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coskun Yildiz & Marcel Richter & Jochen Ströhle & Bernd Epple, 2023. "Release of Sulfur and Chlorine Gas Species during Combustion and Pyrolysis of Walnut Shells in an Entrained Flow Reactor," Energies, MDPI, vol. 16(15), pages 1-18, July.
    2. Ghazidin, Hafizh & Suyatno, Suyatno & Prismantoko, Adi & Ruhiyat, Ade Sana & Prabowo, & Darmawan, Arif & Soleh, Mochamad & Aziz, Amiral & Asmanto, Puji & Vuthaluru, Hari & Wang, Yibin & Yurismono, Har, 2025. "Control of slagging and fouling during co-firing of solid recovered fuel and high-sodium coal using aluminum and magnesium-based additives," Energy, Elsevier, vol. 318(C).
    3. Liu, Jie & Feng, Lele & Wu, Yuxin & Feng, Renhai & Chen, Shukuan & Zhao, Dongqiang, 2024. "Numerical investigation on H2S formation in a pulverized coal-fired boiler using recycled flue gas as near-wall air," Energy, Elsevier, vol. 313(C).
    4. Ghazidin, Hafizh & Suyatno, Suyatno & Prismantoko, Adi & Karuana, Feri & Sarjono, & Prabowo, & Setiyawan, Atok & Darmawan, Arif & Aziz, Muhammad & Vuthaluru, Hari & Hariana, Hariana, 2024. "Impact of additives in mitigating ash-related problems during co-combustion of solid recovered fuel and high-sulfur coal," Energy, Elsevier, vol. 292(C).
    5. Izabella Maj, 2022. "Significance and Challenges of Poultry Litter and Cattle Manure as Sustainable Fuels: A Review," Energies, MDPI, vol. 15(23), pages 1-17, November.
    6. Izabella Maj & Krzysztof Matus, 2023. "Aluminosilicate Clay Minerals: Kaolin, Bentonite, and Halloysite as Fuel Additives for Thermal Conversion of Biomass and Waste," Energies, MDPI, vol. 16(11), pages 1-17, May.
    7. Patrycja Pochwatka & Alina Kowalczyk-Juśko & Marek Pituła & Andrzej Mazur & Iryna Vaskina & Jacek Dach, 2025. "Energetic Potential of Tobacco Waste Within Combustion or Anaerobic Digestion," Energies, MDPI, vol. 18(4), pages 1-16, February.
    8. Wojtacha-Rychter, Karolina & Howaniec, Natalia & Smoliński, Adam, 2024. "Investigation of co-gasification characteristics of coal with wood biomass and rubber seals in a fixed bed gasifier," Renewable Energy, Elsevier, vol. 220(C).
    9. Yinan Qiu & Yan Yang & Na Yang & Lige Tong & Shaowu Yin & Lang Yu & Li Wang, 2022. "Corrosion of Iron Covered with Iron Oxide Film by Chlorine and Hydrogen Chloride Gases: A Molecular Dynamics Simulation Study Using the ReaxFF," Energies, MDPI, vol. 15(12), pages 1-11, June.
    10. Tomasz Hardy & Amit Arora & Halina Pawlak-Kruczek & Wojciech Rafajłowicz & Jerzy Wietrzych & Łukasz Niedźwiecki & Vishwajeet & Krzysztof Mościcki, 2021. "Non-Destructive Diagnostic Methods for Fire-Side Corrosion Risk Assessment of Industrial Scale Boilers, Burning Low Quality Solid Biofuels—A Mini Review," Energies, MDPI, vol. 14(21), pages 1-15, November.
    11. Marek Sciazko & Aleksander Sobolewski, 2021. "Special Issue [Energies] “Clean Utilization and Conversion Technology of Coal”," Energies, MDPI, vol. 14(15), pages 1-3, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3011-:d:1673232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.