IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipbs0360544222023246.html
   My bibliography  Save this article

Conversion of a pulverized coal boiler into a torrefied biomass boiler

Author

Listed:
  • Pronobis, Marek
  • Wejkowski, Robert
  • Kalisz, Sylwester
  • Ciukaj, Szymon

Abstract

The aim of the work is to analyze the possibility of converting a pulverized coal (PC) type OP650 boiler to combustion of 100% biomass in the form of torrefied PKS (Palm Kernel Shell). The replacement of hard coal with torrefied biomass in a PC boiler practically eliminates CO2 emissions. It also reduces the problem of coal shortages in the current political situation in Europe. However, it is necessary to solve the problems of changing the fouling of the boiler, grinding new fuel in coal mills, changing NOx emissions, and changing the exhaust gas dew point. We do not deal with torrefaction, assuming that this problem is technically solved and that such fuel can be purchased. The assessment of the boiler conversion to new fuel was based on the measurements of the boiler in its current state during combustion of coal dust. The HVT (temperature measurement by means of high-velocity thermocouple) measurement of temperature was carried out at points in the area of superheaters, on the rear wall and on one of the sidewalls using a water-cooled aspiration probe. The measurements of the growth rate of high-temperature deposits in the area of platen superheater tubes were also performed. On their basis, a 0-dimensional model of the boiler was created and the risk of slagging after replacing coal with torrefied biomass was assessed. Slagging and fouling tendency of heating surfaces during coal and PKS combustion were compared. The final evaluation of the possibility of converting the OP 650 boiler to combustion of 100% biomass in the form of torrefied PKS was performed. With the same ash fouling of the boiler as for coal, replacing coal with a fuel with a slightly lower calorific value and much lower humidity and ash content, such as torrefied PKS, causes a slight increase in the temperature of live and reheat steam, which in the conditions of the given calculation example gives practically nominal values of these temperatures. In the variant simulating increased fouling of the boiler during biomass combustion, the flue gas temperatures increase even more, which may lead to a strong increase in slagging and fouling. Calculations for wet PKS with significant fouling of the furnace still show high flue gas temperatures in the high temperature area of the boiler. In addition, for a fuel with such characteristics, the risk of slagging is very high. To mitigate the possible operating problems, a doping the PKS with Dunino halloysite from the Polish mine Dunino (DH) was considered. This aluminosilicate is recommended to protect against slagging and fouling. Important advantage of DH is the reduction of chlorine corrosion of the boiler surfaces. The results of the calculations show that during the combustion of PKS, the temperature of the flue gas outlet is higher than during the combustion of coal.

Suggested Citation

  • Pronobis, Marek & Wejkowski, Robert & Kalisz, Sylwester & Ciukaj, Szymon, 2023. "Conversion of a pulverized coal boiler into a torrefied biomass boiler," Energy, Elsevier, vol. 262(PB).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222023246
    DOI: 10.1016/j.energy.2022.125442
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222023246
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125442?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mun, Tae-Young & Tumsa, Tefera Zelalem & Lee, Uendo & Yang, Won, 2016. "Performance evaluation of co-firing various kinds of biomass with low rank coals in a 500 MWe coal-fired power plant," Energy, Elsevier, vol. 115(P1), pages 954-962.
    2. Tymoszuk, Mateusz & Mroczek, Kazimierz & Kalisz, Sylwester & Kubiczek, Henryk, 2019. "An investigation of biomass grindability," Energy, Elsevier, vol. 183(C), pages 116-126.
    3. Tomasz Hardy & Sławomir Kakietek & Krzysztof Halawa & Krzysztof Mościcki & Tomasz Janda, 2020. "Determination of High Temperature Corrosion Rates of Steam Boiler Evaporators Using Continuous Measurements of Flue Gas Composition and Neural Networks," Energies, MDPI, vol. 13(12), pages 1-17, June.
    4. Kalisz, Sylwester & Ciukaj, Szymon & Mroczek, Kazimierz & Tymoszuk, Mateusz & Wejkowski, Robert & Pronobis, Marek & Kubiczek, Henryk, 2015. "Full-scale study on halloysite fireside additive in 230 t/h pulverized coal utility boiler," Energy, Elsevier, vol. 92(P1), pages 33-39.
    5. Sobieraj, Jakub & Gądek, Waldemar & Jagodzińska, Katarzyna & Kalisz, Sylwester, 2021. "Investigations of optimal additive dose for Cl-rich biomasses," Renewable Energy, Elsevier, vol. 163(C), pages 2008-2017.
    6. Li, Jun & Brzdekiewicz, Artur & Yang, Weihong & Blasiak, Wlodzimierz, 2012. "Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching," Applied Energy, Elsevier, vol. 99(C), pages 344-354.
    7. Lasek, Janusz A. & Kopczyński, Marcin & Janusz, Marcin & Iluk, Andrzej & Zuwała, Jarosław, 2017. "Combustion properties of torrefied biomass obtained from flue gas-enhanced reactor," Energy, Elsevier, vol. 119(C), pages 362-368.
    8. Kopczyński, Marcin & Lasek, Janusz A. & Iluk, Andrzej & Zuwała, Jarosław, 2017. "The co-combustion of hard coal with raw and torrefied biomasses (willow (Salix viminalis), olive oil residue and waste wood from furniture manufacturing)," Energy, Elsevier, vol. 140(P1), pages 1316-1325.
    9. Joanna Wnorowska & Waldemar Gądek & Sylwester Kalisz, 2020. "Statistical Model for Prediction of Ash Fusion Temperatures from Additive Doped Biomass," Energies, MDPI, vol. 13(24), pages 1-21, December.
    10. Kafle, Sagar & Euh, Seung Hee & Cho, Lahoon & Nam, Yun Seong & Oh, Kwang Cheol & Choi, Yun Sung & Oh, Jae-Heun & Kim, Dae Hyun, 2017. "Tar fouling reduction in wood pellet boiler using additives and study the effects of additives on the characteristics of pellets," Energy, Elsevier, vol. 129(C), pages 79-85.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hariana, & Putra, Hanafi Prida & Prabowo, & Hilmawan, Edi & Darmawan, Arif & Mochida, Keiichi & Aziz, Muhammad, 2023. "Theoretical and experimental investigation of ash-related problems during coal co-firing with different types of biomass in a pulverized coal-fired boiler," Energy, Elsevier, vol. 269(C).
    2. Zheng, Liangqian & Jin, Jing & Zhang, Ruipu & Liu, Zhongyi & Zhang, Li, 2023. "Understanding the effect of dolomite additive on corrosion characteristics of straw biomass ash through experiment study and molecular dynamics calculations," Energy, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Chungen, 2020. "Development in biomass preparation for suspension firing towards higher biomass shares and better boiler performance and fuel rangeability," Energy, Elsevier, vol. 196(C).
    2. Sher, Farooq & Yaqoob, Aqsa & Saeed, Farrukh & Zhang, Shengfu & Jahan, Zaib & Klemeš, Jiří Jaromír, 2020. "Torrefied biomass fuels as a renewable alternative to coal in co-firing for power generation," Energy, Elsevier, vol. 209(C).
    3. Krochmalny, Krystian & Niedzwiecki, Lukasz & Pelińska-Olko, Ewa & Wnukowski, Mateusz & Czajka, Krzysztof & Tkaczuk-Serafin, Monika & Pawlak-Kruczek, Halina, 2020. "Determination of the marker for automation of torrefaction and slow pyrolysis processes – A case study of spherical wood particles," Renewable Energy, Elsevier, vol. 161(C), pages 350-360.
    4. Szufa, S. & Piersa, P. & Junga, R. & Błaszczuk, A. & Modliński, N. & Sobek, S. & Marczak-Grzesik, M. & Adrian, Ł. & Dzikuć, M., 2023. "Numerical modeling of the co-firing process of an in situ steam-torrefied biomass with coal in a 230 MW industrial-scale boiler," Energy, Elsevier, vol. 263(PE).
    5. Kopczyński, Marcin & Lasek, Janusz A. & Iluk, Andrzej & Zuwała, Jarosław, 2017. "The co-combustion of hard coal with raw and torrefied biomasses (willow (Salix viminalis), olive oil residue and waste wood from furniture manufacturing)," Energy, Elsevier, vol. 140(P1), pages 1316-1325.
    6. Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
    7. Izabella Maj & Sylwester Kalisz & Szymon Ciukaj, 2022. "Properties of Animal-Origin Ash—A Valuable Material for Circular Economy," Energies, MDPI, vol. 15(4), pages 1-15, February.
    8. Hariana, & Ghazidin, Hafizh & Putra, Hanafi Prida & Darmawan, Arif & Prabowo, & Hilmawan, Edi & Aziz, Muhammad, 2023. "The effects of additives on deposit formation during co-firing of high-sodium coal with high-potassium and -chlorine biomass," Energy, Elsevier, vol. 271(C).
    9. Wilk, Małgorzata & Magdziarz, Aneta, 2017. "Hydrothermal carbonization, torrefaction and slow pyrolysis of Miscanthus giganteus," Energy, Elsevier, vol. 140(P1), pages 1292-1304.
    10. Mateusz Jackowski & Łukasz Niedźwiecki & Krzysztof Mościcki & Amit Arora & Muhammad Azam Saeed & Krystian Krochmalny & Jakub Pawliczek & Anna Trusek & Magdalena Lech & Jan Skřínský & Jakub Čespiva & J, 2021. "Synergetic Co-Production of Beer Colouring Agent and Solid Fuel from Brewers’ Spent Grain in the Circular Economy Perspective," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    11. Abdulyekeen, Kabir Abogunde & Umar, Ahmad Abulfathi & Patah, Muhamad Fazly Abdul & Daud, Wan Mohd Ashri Wan, 2021. "Torrefaction of biomass: Production of enhanced solid biofuel from municipal solid waste and other types of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    12. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    13. Tran, Khanh-Quang & Luo, Xun & Seisenbaeva, Gulaim & Jirjis, Raida, 2013. "Stump torrefaction for bioenergy application," Applied Energy, Elsevier, vol. 112(C), pages 539-546.
    14. Martyna Tomala & Andrzej Rusin, 2022. "Risk-Based Operation and Maintenance Planning of Steam Turbine with the Long In-Service Time," Energies, MDPI, vol. 15(14), pages 1-17, July.
    15. Agar, David A. & Rudolfsson, Magnus & Lavergne, Simon & Melkior, Thierry & Da Silva Perez, Denilson & Dupont, Capucine & Campargue, Matthieu & Kalén, Gunnar & Larsson, Sylvia H., 2021. "Pelleting torrefied biomass at pilot-scale – Quality and implications for co-firing," Renewable Energy, Elsevier, vol. 178(C), pages 766-774.
    16. Yang, Bo & Wei, Yi-Ming & Hou, Yunbing & Li, Hui & Wang, Pengtao, 2019. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    17. Miedema, Jan H. & Benders, René M.J. & Moll, Henri C. & Pierie, Frank, 2017. "Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant," Applied Energy, Elsevier, vol. 187(C), pages 873-885.
    18. Leonel J. R. Nunes & João C. O. Matias, 2020. "Biomass Torrefaction as a Key Driver for the Sustainable Development and Decarbonization of Energy Production," Sustainability, MDPI, vol. 12(3), pages 1-9, January.
    19. Wander, Paulo R. & Bianchi, Flávio M. & Caetano, Nattan R. & Klunk, Marcos A. & Indrusiak, Maria Luiza S., 2020. "Cofiring low-rank coal and biomass in a bubbling fluidized bed with varying excess air ratio and fluidization velocity," Energy, Elsevier, vol. 203(C).
    20. Xing, Zhou & Ping, Zhou & Xiqiang, Zhao & Zhanlong, Song & Wenlong, Wang & Jing, Sun & Yanpeng, Mao, 2021. "Applicability of municipal solid waste incineration (MSWI) system integrated with pre-drying or torrefaction for flue gas waste heat recovery," Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222023246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.