IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4396-d840578.html
   My bibliography  Save this article

Use of Hydrothermal Carbonization and Cold Atmospheric Plasma for Surface Modification of Brewer’s Spent Grain and Activated Carbon

Author

Listed:
  • Krystian Krochmalny

    (Faculty of Mechanical and Power Engineering, Department of Energy Conversion Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Halina Pawlak-Kruczek

    (Faculty of Mechanical and Power Engineering, Department of Energy Conversion Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Norbert Skoczylas

    (The Strata Mechanics Research Institute of the Polish Academy of Sciences, 30-059 Kraków, Poland)

  • Mateusz Kudasik

    (The Strata Mechanics Research Institute of the Polish Academy of Sciences, 30-059 Kraków, Poland)

  • Aleksandra Gajda

    (The Strata Mechanics Research Institute of the Polish Academy of Sciences, 30-059 Kraków, Poland)

  • Renata Gnatowska

    (Faculty of Mechanical Engineering and Computer Science, Institute of Thermal Machinery, Częstochowa University of Technology, Armii Krajowej 21, 42-200 Częstochowa, Poland)

  • Monika Serafin-Tkaczuk

    (Faculty of Mechanical and Power Engineering, Department of Energy Conversion Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Tomasz Czapka

    (Faculty of Mechanical and Power Engineering, Department of Energy Conversion Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Amit K. Jaiswal

    (School of Food Science and Environmental Health, Faculty of Science, Technological University Dublin-City Campus, Central Quad, Grangegorman, D07 ADY7 Dublin, Ireland)

  • Vishwajeet

    (Faculty of Mechanical and Power Engineering, Department of Energy Conversion Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Amit Arora

    (Department of Chemical Engineering, Shaheed Bhagat Singh State University, Ferozepur 152004, Punjab, India)

  • Tomasz Hardy

    (Faculty of Mechanical and Power Engineering, Department of Energy Conversion Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Mateusz Jackowski

    (Faculty of Mechanical and Power Engineering, Department of Energy Conversion Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Michał Ostrycharczyk

    (Faculty of Mechanical and Power Engineering, Department of Energy Conversion Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Łukasz Niedźwiecki

    (Faculty of Mechanical and Power Engineering, Department of Energy Conversion Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

Abstract

This paper presents results that show the effect of hydrothermal carbonization and subsequent cold plasma jet treatment with helium and argon on the structure and sorption properties of a material—spent brewery grain. Treatment of activated carbon, with a cold atmospheric plasma jet, was used comparatively. The effect of activation on the pore structure of the materials was carried out by the volumetric method at low pressure (N 2 , 77 K). The specific surface area as well as the total pore volume, average pore size, and pore size distribution were determined using different theoretical models. A high improvement in the sorption capacity parameter was obtained for hydrochars after cold atmospheric plasma jet treatment with an increase of 7.5 times (using He) and 11.6 times (using Ar) compared with hydrochars before cold atmospheric plasma jet treatment. The increase in specific surface area was five-fold (He) and fifteen-fold (Ar). For activated carbon, such a large change was not obtained after plasma activation. Regardless of the gas used, the increase in structural parameter values was 1.1–1.3.

Suggested Citation

  • Krystian Krochmalny & Halina Pawlak-Kruczek & Norbert Skoczylas & Mateusz Kudasik & Aleksandra Gajda & Renata Gnatowska & Monika Serafin-Tkaczuk & Tomasz Czapka & Amit K. Jaiswal & Vishwajeet & Amit A, 2022. "Use of Hydrothermal Carbonization and Cold Atmospheric Plasma for Surface Modification of Brewer’s Spent Grain and Activated Carbon," Energies, MDPI, vol. 15(12), pages 1-11, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4396-:d:840578
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4396/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4396/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roberta Ferrentino & Fabio Merzari & Luca Fiori & Gianni Andreottola, 2020. "Coupling Hydrothermal Carbonization with Anaerobic Digestion for Sewage Sludge Treatment: Influence of HTC Liquor and Hydrochar on Biomethane Production," Energies, MDPI, vol. 13(23), pages 1-19, November.
    2. Aragón-Briceño, C.I. & Ross, A.B. & Camargo-Valero, M.A., 2021. "Mass and energy integration study of hydrothermal carbonization with anaerobic digestion of sewage sludge," Renewable Energy, Elsevier, vol. 167(C), pages 473-483.
    3. Agnieszka Urbanowska & Małgorzata Kabsch-Korbutowicz & Mateusz Wnukowski & Przemysław Seruga & Marcin Baranowski & Halina Pawlak-Kruczek & Monika Serafin-Tkaczuk & Krystian Krochmalny & Lukasz Niedzwi, 2020. "Treatment of Liquid By-Products of Hydrothermal Carbonization (HTC) of Agricultural Digestate Using Membrane Separation," Energies, MDPI, vol. 13(1), pages 1-12, January.
    4. Antonio Picone & Maurizio Volpe & Antonio Messineo, 2021. "Process Water Recirculation during Hydrothermal Carbonization of Waste Biomass: Current Knowledge and Challenges," Energies, MDPI, vol. 14(10), pages 1-14, May.
    5. Tungal, Richa & Shende, Rajesh V., 2014. "Hydrothermal liquefaction of pinewood (Pinus ponderosa) for H2, biocrude and bio-oil generation," Applied Energy, Elsevier, vol. 134(C), pages 401-412.
    6. Wilk, Małgorzata & Śliz, Maciej & Gajek, Marcin, 2021. "The effects of hydrothermal carbonization operating parameters on high-value hydrochar derived from beet pulp," Renewable Energy, Elsevier, vol. 177(C), pages 216-228.
    7. Mateusz Jackowski & Lukasz Niedzwiecki & Magdalena Lech & Mateusz Wnukowski & Amit Arora & Monika Tkaczuk-Serafin & Marcin Baranowski & Krystian Krochmalny & Vivek K. Veetil & Przemysław Seruga & Anna, 2020. "HTC of Wet Residues of the Brewing Process: Comprehensive Characterization of Produced Beer, Spent Grain and Valorized Residues," Energies, MDPI, vol. 13(8), pages 1-20, April.
    8. Surup, Gerrit Ralf & Leahy, James J. & Timko, Michael T. & Trubetskaya, Anna, 2020. "Hydrothermal carbonization of olive wastes to produce renewable, binder-free pellets for use as metallurgical reducing agents," Renewable Energy, Elsevier, vol. 155(C), pages 347-357.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chung-Yueh Shih & I-Chih Ni & Chih-Lin Chan & Cheng-Che Hsu & Chih-I Wu & I-Chun Cheng & Jian-Zhang Chen, 2022. "Helium Dielectric Barrier Discharge Plasma Jet (DBD Jet)-Processed Graphite Foil as Current Collector for Paper-Based Fluidic Aluminum-Air Batteries," Energies, MDPI, vol. 15(16), pages 1-11, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agnieszka Urbanowska & Małgorzata Kabsch-Korbutowicz & Christian Aragon-Briceño & Mateusz Wnukowski & Artur Pożarlik & Lukasz Niedzwiecki & Marcin Baranowski & Michał Czerep & Przemysław Seruga & Hali, 2021. "Cascade Membrane System for Separation of Water and Organics from Liquid By-Products of HTC of the Agricultural Digestate—Evaluation of Performance," Energies, MDPI, vol. 14(16), pages 1-18, August.
    2. Magdziarz, Aneta & Mlonka-Mędrala, Agata & Sieradzka, Małgorzata & Aragon-Briceño, Christian & Pożarlik, Artur & Bramer, Eddy A. & Brem, Gerrit & Niedzwiecki, Łukasz & Pawlak-Kruczek, Halina, 2021. "Multiphase analysis of hydrochars obtained by anaerobic digestion of municipal solid waste organic fraction," Renewable Energy, Elsevier, vol. 175(C), pages 108-118.
    3. Urbanowska, Agnieszka & Niedzwiecki, Lukasz & Wnukowski, Mateusz & Aragon-Briceño, Christian & Kabsch-Korbutowicz, Małgorzata & Baranowski, Marcin & Czerep, Michał & Seruga, Przemysław & Pawlak-Krucze, 2023. "Recovery of chemical energy from retentates from cascade membrane filtration of hydrothermal carbonisation effluent," Energy, Elsevier, vol. 284(C).
    4. Pietro Romano & Nicola Stampone & Gabriele Di Giacomo, 2023. "Evolution and Prospects of Hydrothermal Carbonization," Energies, MDPI, vol. 16(7), pages 1-11, March.
    5. Halina Pawlak-Kruczek & Agnieszka Urbanowska & Lukasz Niedzwiecki & Michał Czerep & Marcin Baranowski & Christian Aragon-Briceño & Małgorzata Kabsch-Korbutowicz & Amit Arora & Przemysław Seruga & Mate, 2023. "Hydrothermal Carbonisation as Treatment for Effective Moisture Removal from Digestate—Mechanical Dewatering, Flashing-Off, and Condensates’ Processing," Energies, MDPI, vol. 16(13), pages 1-9, July.
    6. Aragon-Briceño, Christian & Pożarlik, Artur & Bramer, Eddy & Brem, Gerrit & Wang, Shule & Wen, Yuming & Yang, Weihong & Pawlak-Kruczek, Halina & Niedźwiecki, Łukasz & Urbanowska, Agnieszka & Mościcki,, 2022. "Integration of hydrothermal carbonization treatment for water and energy recovery from organic fraction of municipal solid waste digestate," Renewable Energy, Elsevier, vol. 184(C), pages 577-591.
    7. Ayala-Cortés, Alejandro & Arcelus-Arrillaga, Pedro & Millan, Marcos & Okoye, Patrick U. & Arancibia-Bulnes, Camilo A. & Pacheco-Catalán, Daniella Esperanza & Villafán-Vidales, Heidi Isabel, 2022. "Solar hydrothermal processing of agave bagasse: Insights on the effect of operational parameters," Renewable Energy, Elsevier, vol. 192(C), pages 14-23.
    8. Tomasz Hardy & Amit Arora & Halina Pawlak-Kruczek & Wojciech Rafajłowicz & Jerzy Wietrzych & Łukasz Niedźwiecki & Vishwajeet & Krzysztof Mościcki, 2021. "Non-Destructive Diagnostic Methods for Fire-Side Corrosion Risk Assessment of Industrial Scale Boilers, Burning Low Quality Solid Biofuels—A Mini Review," Energies, MDPI, vol. 14(21), pages 1-15, November.
    9. Tadeáš Ochodek & Emmanouil Karampinis & Artur Pozarlik, 2022. "Contemporary Problems in Combustion—Fuels, Their Valorisation, Emissions, Flexibility and Auxiliary Systems," Energies, MDPI, vol. 15(5), pages 1-4, February.
    10. Louise Delahaye & John Thomas Hobson & Matthew Peter Rando & Brenna Sweeney & Avery Bernard Brown & Geoffrey Allen Tompsett & Ayten Ates & N. Aaron Deskins & Michael Thomas Timko, 2020. "Experimental and Computational Evaluation of Heavy Metal Cation Adsorption for Molecular Design of Hydrothermal Char," Energies, MDPI, vol. 13(16), pages 1-24, August.
    11. Dilvin Cebi & Melih Soner Celiktas & Hasan Sarptas, 2022. "A Review on Sewage Sludge Valorization via Hydrothermal Carbonization and Applications for Circular Economy," Circular Economy and Sustainability,, Springer.
    12. Tiago Teribele & Maria Elizabeth Gemaque Costa & Conceição de Maria Sales da Silva & Lia Martins Pereira & Lucas Pinto Bernar & Douglas Alberto Rocha de Castro & Fernanda Paula da Costa Assunção & Mar, 2023. "Hydrothermal Carbonization of Corn Stover: Structural Evolution of Hydro-Char and Degradation Kinetics," Energies, MDPI, vol. 16(7), pages 1-22, April.
    13. Giuseppe Campo & Alberto Cerutti & Claudio Lastella & Aldo Leo & Deborah Panepinto & Mariachiara Zanetti & Barbara Ruffino, 2021. "Production and Destination of Sewage Sludge in the Piemonte Region (Italy): The Results of a Survey for a Future Sustainable Management," IJERPH, MDPI, vol. 18(7), pages 1-13, March.
    14. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    15. Vishwajeet & Halina Pawlak-Kruczek & Marcin Baranowski & Michał Czerep & Artur Chorążyczewski & Krystian Krochmalny & Michał Ostrycharczyk & Paweł Ziółkowski & Paweł Madejski & Tadeusz Mączka & Amit A, 2022. "Entrained Flow Plasma Gasification of Sewage Sludge–Proof-of-Concept and Fate of Inorganics," Energies, MDPI, vol. 15(5), pages 1-14, March.
    16. Anna Trubetskaya, 2022. "Reactivity Effects of Inorganic Content in Biomass Gasification: A Review," Energies, MDPI, vol. 15(9), pages 1-36, April.
    17. Sun-Ju Lee & Min-Ah Oh & Seung-Jin Oh & Na-Hyeon Cho & Young-Yeul Kang & Jai-Young Lee, 2022. "Effects of Bioliquid Recirculation on Hydrothermal Carbonization of Lignocellulosic Biomass," Energies, MDPI, vol. 15(13), pages 1-10, July.
    18. Agnieszka Urbanowska & Małgorzata Kabsch-Korbutowicz, 2021. "The Use of Flat Ceramic Membranes for Purification of the Liquid Fraction of the Digestate from Municipal Waste Biogas Plants," Energies, MDPI, vol. 14(13), pages 1-12, July.
    19. Kossińska, Nina & Krzyżyńska, Renata & Ghazal, Heba & Jouhara, Hussam, 2023. "Hydrothermal carbonisation of sewage sludge and resulting biofuels as a sustainable energy source," Energy, Elsevier, vol. 275(C).
    20. Trubetskaya, Anna & Grams, Jacek & Leahy, James J. & Johnson, Robert & Gallagher, Paul & Monaghan, Rory F.D. & Kwapinska, Marzena, 2020. "The effect of particle size, temperature and residence time on the yields and reactivity of olive stones from torrefaction," Renewable Energy, Elsevier, vol. 160(C), pages 998-1011.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4396-:d:840578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.