IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v162y2016icp1195-1204.html
   My bibliography  Save this article

Investigation of rye straw ash sintering characteristics and the effect of additives

Author

Listed:
  • Wang, Liang
  • Skreiberg, Øyvind
  • Becidan, Michael
  • Li, Hailong

Abstract

The understanding of ash sintering during combustion of agricultural residues is far from complete, because of the high heterogeneity of the content and composition of ash forming matters and the complex transformation of them. In order to make agricultural residues competitive fuels on the energy market, further research efforts are needed to investigate agricultural residues’ ash sintering behavior and propose relevant anti-sintering measures. The aim of this work was to investigate the ash characteristics of rye straw and effects of additives. Three additives were studied regarding their abilities to prevent and abate rye straw ash sintering. Standard ash fusion characterization and laboratory-scale sintering tests were performed on ashes from mixtures of rye straw and additives produced at 550°C. Ash residues from sintering tests at higher temperatures were analyzed using a combination of X-ray diffraction (XRD) and scanning electron microscopy–energy dispersive X-ray spectrometry (SEM–EDX). High sintering and melting tendency of the rye straw ash at elevated temperatures was observed. Severe sintering of the rye straw ash was attributed to the formation and fusion of low temperature K–silicates and K–phosphates with high K/Ca ratios. Among the three additives, calcite served the best one to mitigate sintering of the rye straw ash. Ca from the calcite promoted formation of high temperature silicates and calcium rich K–phosphates. In addition, calcite may hinder aggregating of ash melts and further formation of large ash slag. Therefore, the chemical reactions and physical restraining effects arose by calcite addition contributed to reduction of ash melts and sintering degree. Upon addition of kaolin, compositions of rye straw ash shifted from low temperature melting K–silicates to high temperature melting K–Al–silicates. The changes of ash chemistry were favorable for reducing sintering of the rye straw ash. As the Ca-sludge was added, reduction of sintering of the rye straw ash was less pronounced. Only K4CaSi3O9 and a small amount of KCaPO4 were identified in the rye straw ash as Ca-sludge was added.

Suggested Citation

  • Wang, Liang & Skreiberg, Øyvind & Becidan, Michael & Li, Hailong, 2016. "Investigation of rye straw ash sintering characteristics and the effect of additives," Applied Energy, Elsevier, vol. 162(C), pages 1195-1204.
  • Handle: RePEc:eee:appene:v:162:y:2016:i:c:p:1195-1204
    DOI: 10.1016/j.apenergy.2015.05.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915006376
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.05.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Borello, Domenico & Venturini, Paolo & Rispoli, Franco & Rafael, Saavedra G.Z., 2013. "Prediction of multiphase combustion and ash deposition within a biomass furnace," Applied Energy, Elsevier, vol. 101(C), pages 413-422.
    2. Dassanayake, Geekiyanage Disela Malinga & Kumar, Amit, 2012. "Techno-economic assessment of triticale straw for power generation," Applied Energy, Elsevier, vol. 98(C), pages 236-245.
    3. Konsomboon, Supatchaya & Pipatmanomai, Suneerat & Madhiyanon, Thanid & Tia, Suvit, 2011. "Effect of kaolin addition on ash characteristics of palm empty fruit bunch (EFB) upon combustion," Applied Energy, Elsevier, vol. 88(1), pages 298-305, January.
    4. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "Mixed biomass pellets for thermal energy production: A review of combustion models," Applied Energy, Elsevier, vol. 127(C), pages 135-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chi, Hetian & Pans, Miguel A. & Sun, Chenggong & Liu, Hao, 2022. "Effectiveness of bed additives in abating agglomeration during biomass air/oxy combustion in a fluidised bed combustor," Renewable Energy, Elsevier, vol. 185(C), pages 945-958.
    2. Liu, Lang & Ren, Shan & Yang, Jian & Jiang, Donghai & Guo, Junjiang & Pu, Yubao & Meng, Xianpiao, 2022. "Experimental study on K migration, ash fouling/slagging behaviors and CO2 emission during co-combustion of rice straw and coal gangue," Energy, Elsevier, vol. 251(C).
    3. Hongwei Hu & Kun Zhou & Kesheng Meng & Lanbo Song & Qizhao Lin, 2017. "Effects of SiO2/Al2O3 Ratios on Sintering Characteristics of Synthetic Coal Ash," Energies, MDPI, vol. 10(2), pages 1-14, February.
    4. Yao, Xiwen & Zheng, Yan & Zhou, Haodong & Xu, Kaili & Xu, Qingwei & Li, Li, 2020. "Effects of biomass blending, ashing temperature and potassium addition on ash sintering behaviour during co-firing of pine sawdust with a Chinese anthracite," Renewable Energy, Elsevier, vol. 147(P1), pages 2309-2320.
    5. William Leoncio Carrasco-Chilón & Wuesley Yusmein Alvarez-García & Marieta E. Cervantes Peralta & Carlos Quilcate & Hector V. Vásquez, 2023. "Rye Production under Acid Soils and Drought Conditions: An Alternative for the Sustainability of High Andean Livestock Farming in Peru," Sustainability, MDPI, vol. 15(14), pages 1-12, July.
    6. Zhou, Chunguang & Rosén, Christer & Engvall, Klas, 2016. "Biomass oxygen/steam gasification in a pressurized bubbling fluidized bed: Agglomeration behavior," Applied Energy, Elsevier, vol. 172(C), pages 230-250.
    7. Míguez, José Luis & Porteiro, Jacobo & Behrendt, Frank & Blanco, Diana & Patiño, David & Dieguez-Alonso, Alba, 2021. "Review of the use of additives to mitigate operational problems associated with the combustion of biomass with high content in ash-forming species," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    8. Zhu, Youjian & Yang, Wei & Fan, Jiyuan & Kan, Tao & Zhang, Wennan & Liu, Heng & Cheng, Wei & Yang, Haiping & Wu, Xuehong & Chen, Hanping, 2018. "Effect of sodium carboxymethyl cellulose addition on particulate matter emissions during biomass pellet combustion," Applied Energy, Elsevier, vol. 230(C), pages 925-934.
    9. Chen, Chunxiang & Huang, Yuting & Qin, Songheng & Huang, Dengchang & Bu, Xiaoyan & Huang, Haozhong, 2020. "Slagging tendency estimation of aquatic microalgae and comparison with terrestrial biomass and waste," Energy, Elsevier, vol. 194(C).
    10. Bozaghian, Marjan & Rebbling, Anders & Larsson, Sylvia H. & Thyrel, Mikael & Xiong, Shaojun & Skoglund, Nils, 2018. "Combustion characteristics of straw stored with CaCO3 in bubbling fluidized bed using quartz and olivine as bed materials," Applied Energy, Elsevier, vol. 212(C), pages 1400-1408.
    11. Liu, Yingzu & He, Yong & Wang, Zhihua & Xia, Jun & Wan, Kaidi & Whiddon, Ronald & Cen, Kefa, 2018. "Characteristics of alkali species release from a burning coal/biomass blend," Applied Energy, Elsevier, vol. 215(C), pages 523-531.
    12. Anand, Amrit & Kachhap, Anju & Gautam, Shalini, 2023. "Synergistic effect of coal and biomass gasification and organo-inorganic elemental impact on gasification performance and product gas," Energy, Elsevier, vol. 282(C).
    13. Li, Fenghai & Li, Yang & Fan, Hongli & Wang, Tao & Guo, Mingxi & Fang, Yitian, 2019. "Investigation on fusion characteristics of deposition from biomass vibrating grate furnace combustion and its modification," Energy, Elsevier, vol. 174(C), pages 724-734.
    14. Tomasz Hardy & Amit Arora & Halina Pawlak-Kruczek & Wojciech Rafajłowicz & Jerzy Wietrzych & Łukasz Niedźwiecki & Vishwajeet & Krzysztof Mościcki, 2021. "Non-Destructive Diagnostic Methods for Fire-Side Corrosion Risk Assessment of Industrial Scale Boilers, Burning Low Quality Solid Biofuels—A Mini Review," Energies, MDPI, vol. 14(21), pages 1-15, November.
    15. Sakiewicz, Piotr & Piotrowski, Krzysztof & Kalisz, Sylwester, 2020. "Neural network prediction of parameters of biomass ashes, reused within the circular economy frame," Renewable Energy, Elsevier, vol. 162(C), pages 743-753.
    16. Ziqiang Yang & Fenghai Li & Mingjie Ma & Xuefei Liu & Hongli Fan & Zhenzhu Li & Yong Wang & Yitian Fang, 2023. "Regulation Mechanism of Solid Waste on Ash Fusion Characteristics of Sorghum Straw under O 2 /CO 2 Atmosphere," Energies, MDPI, vol. 16(20), pages 1-17, October.
    17. Chen, Chunxiang & Bi, Yingxin & Feng, Jinpeng & Huang, Yuting & Huang, Jinzhu & Huang, Haozhong, 2022. "Study on the slagging tendency estimation of biomass fuel combustion with different additives and pretreatment processes," Energy, Elsevier, vol. 239(PE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nataša Dragutinović & Isabel Höfer & Martin Kaltschmitt, 2021. "Fuel Improvement Measures for Particulate Matter Emission Reduction during Corn Cob Combustion," Energies, MDPI, vol. 14(15), pages 1-23, July.
    2. Xiao, Zhihua & Yuan, Xingzhong & Jiang, Longbo & Chen, Xiaohong & Li, Hui & Zeng, Guangming & Leng, Lijian & Wang, Hou & Huang, Huajun, 2015. "Energy recovery and secondary pollutant emission from the combustion of co-pelletized fuel from municipal sewage sludge and wood sawdust," Energy, Elsevier, vol. 91(C), pages 441-450.
    3. Zhang, Qin & Zhou, Dequn & Zhou, Peng & Ding, Hao, 2013. "Cost Analysis of straw-based power generation in Jiangsu Province, China," Applied Energy, Elsevier, vol. 102(C), pages 785-793.
    4. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2016. "Wood pellets as a sustainable energy alternative in Portugal," Renewable Energy, Elsevier, vol. 85(C), pages 1011-1016.
    5. Shibo Wu & Jiannan Chen & Daoping Peng & Zheng Wu & Qin Li & Tao Huang, 2019. "Effects of Water Leaching on the Ash Sintering Problems of Wheat Straw," Energies, MDPI, vol. 12(3), pages 1-14, January.
    6. Grzegorz Maj, 2018. "Emission Factors and Energy Properties of Agro and Forest Biomass in Aspect of Sustainability of Energy Sector," Energies, MDPI, vol. 11(6), pages 1-12, June.
    7. Jung-Kyu Lee & Dongho Hong & Hyunkyu Chae & Dong-Hoon Lee, 2023. "Prediction of Storage Conditions to Increase the Bioenergy Efficiency of Giant Miscanthus Pellets Produced through On-Site Integrated Pretreatment Machines," Energies, MDPI, vol. 16(5), pages 1-14, March.
    8. Md Tanvir Alam & Jang-Soo Lee & Sang-Yeop Lee & Dhruba Bhatta & Kunio Yoshikawa & Yong-Chil Seo, 2019. "Low Chlorine Fuel Pellets Production from the Mixture of Hydrothermally Treated Hospital Solid Waste, Pyrolytic Plastic Waste Residue and Biomass," Energies, MDPI, vol. 12(22), pages 1-17, November.
    9. Ji, Xi & Long, Xianling, 2016. "A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 41-52.
    10. Agbor, Ezinwa & Oyedun, Adetoyese Olajire & Zhang, Xiaolei & Kumar, Amit, 2016. "Integrated techno-economic and environmental assessments of sixty scenarios for co-firing biomass with coal and natural gas," Applied Energy, Elsevier, vol. 169(C), pages 433-449.
    11. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    12. Shizhong Song & Pei Liu & Jing Xu & Linwei Ma & Chinhao Chong & Min He & Xianzheng Huang & Zheng Li & Weidou Ni, 2016. "An Economic and Policy Analysis of a District Heating System Using Corn Straw Densified Fuel: A Case Study in Nong’an County in Jilin Province, China," Energies, MDPI, vol. 10(1), pages 1-22, December.
    13. Liu, Yingzu & He, Yong & Wang, Zhihua & Xia, Jun & Wan, Kaidi & Whiddon, Ronald & Cen, Kefa, 2018. "Characteristics of alkali species release from a burning coal/biomass blend," Applied Energy, Elsevier, vol. 215(C), pages 523-531.
    14. Saad A El-Sayed & Mohammed Khairy Elsaid Mohamed, 2018. "Mechanical properties and characteristics of wheat straw and pellets," Energy & Environment, , vol. 29(7), pages 1224-1246, November.
    15. Ghazidin, Hafizh & Suyatno, Suyatno & Prismantoko, Adi & Karuana, Feri & Sarjono, & Prabowo, & Setiyawan, Atok & Darmawan, Arif & Aziz, Muhammad & Vuthaluru, Hari & Hariana, Hariana, 2024. "Impact of additives in mitigating ash-related problems during co-combustion of solid recovered fuel and high-sulfur coal," Energy, Elsevier, vol. 292(C).
    16. Fuller, Aaron & Omidiji, Yinka & Viefhaus, Tillman & Maier, Jörg & Scheffknecht, Günter, 2019. "The impact of an additive on fly ash formation/transformation from wood dust combustion in a lab-scale pulverized fuel reactor," Renewable Energy, Elsevier, vol. 136(C), pages 732-745.
    17. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H. & Ahmad-Yazid, A., 2012. "A review on electricity generation based on biomass residue in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5879-5889.
    18. Díaz-Ramírez, Maryori & Sebastián, Fernando & Royo, Javier & Rezeau, Adeline, 2014. "Influencing factors on NOX emission level during grate conversion of three pelletized energy crops," Applied Energy, Elsevier, vol. 115(C), pages 360-373.
    19. Shafie, S.M., 2016. "A review on paddy residue based power generation: Energy, environment and economic perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1089-1100.
    20. Ninduangdee, Pichet & Kuprianov, Vladimir I., 2016. "A study on combustion of oil palm empty fruit bunch in a fluidized bed using alternative bed materials: Performance, emissions, and time-domain changes in the bed condition," Applied Energy, Elsevier, vol. 176(C), pages 34-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:162:y:2016:i:c:p:1195-1204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.