IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v105y2019icp332-348.html
   My bibliography  Save this article

The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets

Author

Listed:
  • Mostafa, Mohamed E.
  • Hu, Song
  • Wang, Yi
  • Su, Sheng
  • Hu, Xun
  • Elsayed, Saad A.
  • Xiang, Jun

Abstract

Biomass raw materials are widely regarded as a significant source of renewable energy, which significantly reduces the dependence on traditional fossil fuels, especially in the case of countries that are able to obtain biomass from various sources. Recently, pelletization has been widely used for mass and energy densification of biomass to overcome the problems associated with raw material use. As the global pellet market has developed quickly, the use of wood residues became no longer sufficient to fulfill the market needs. The standards of pellets provide limits for both physical and mechanical characteristics of produced pellets. Characteristics of produced pellets depend mainly on the feedstock characteristics as particle size and moisture content and operating conditions as applied pressure and die temperature. Thus, this paper provides rich information on the factors affecting the physical and mechanical properties of granules included in pellets. The main goal of the paper is to review the latest and comprehensive research on the physical and mechanical properties of most types of single and mixed pellets from biomass. The analysis of the effect of properties, adhesives, humidity, pressure and temperature as well as the physical and mechanical properties of the pellets studied was carried out. In addition, the critical and optimal values of various factors for different materials in which the following is of importance: high quality of pellets and biomass from which they are produced were analyzed. The principle and effect of applying post-production conditions as steam explosion and torrefaction on the characteristics of the pellets were reviewed in details. Moreover, this study proposes some recommendations for further development of the pelletization analysis and characteristics.

Suggested Citation

  • Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
  • Handle: RePEc:eee:rensus:v:105:y:2019:i:c:p:332-348
    DOI: 10.1016/j.rser.2019.01.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119300772
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.01.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    2. Liu, Zhijia & Mi, Bingbing & Jiang, Zehui & Fei, Benhua & Cai, Zhiyong & Liu, Xing'e, 2016. "Improved bulk density of bamboo pellets as biomass for energy production," Renewable Energy, Elsevier, vol. 86(C), pages 1-7.
    3. Obidziński, Sławomir & Piekut, Jolanta & Dec, Dorota, 2016. "The influence of potato pulp content on the properties of pellets from buckwheat hulls," Renewable Energy, Elsevier, vol. 87(P1), pages 289-297.
    4. Ahn, Byoung Jun & Chang, Hee-sun & Lee, Soo Min & Choi, Don Ha & Cho, Seong Taek & Han, Gyu-seong & Yang, In, 2014. "Effect of binders on the durability of wood pellets fabricated from Larix kaemferi C. and Liriodendron tulipifera L. sawdust," Renewable Energy, Elsevier, vol. 62(C), pages 18-23.
    5. McKechnie, Jon & Saville, Brad & MacLean, Heather L., 2016. "Steam-treated wood pellets: Environmental and financial implications relative to fossil fuels and conventional pellets for electricity generation," Applied Energy, Elsevier, vol. 180(C), pages 637-649.
    6. Kong, Lingjun & Tian, ShuangHong & He, Chun & Du, Changming & Tu, YuTing & Xiong, Ya, 2012. "Effect of waste wrapping paper fiber as a “solid bridge” on physical characteristics of biomass pellets made from wood sawdust," Applied Energy, Elsevier, vol. 98(C), pages 33-39.
    7. Liu, Zhijia & Liu, Xing'e & Fei, Benhua & Jiang, Zehui & Cai, Zhiyong & Yu, Yan, 2013. "The properties of pellets from mixing bamboo and rice straw," Renewable Energy, Elsevier, vol. 55(C), pages 1-5.
    8. García-Maraver, A. & Popov, V. & Zamorano, M., 2011. "A review of European standards for pellet quality," Renewable Energy, Elsevier, vol. 36(12), pages 3537-3540.
    9. Tripathi, Manoj & Sahu, J.N. & Ganesan, P., 2016. "Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 467-481.
    10. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "Mixed biomass pellets for thermal energy production: A review of combustion models," Applied Energy, Elsevier, vol. 127(C), pages 135-140.
    11. Sahoo, Kamalakanta & Bilek, E.M. (Ted) & Mani, Sudhagar, 2018. "Techno-economic and environmental assessments of storing woodchips and pellets for bioenergy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 27-39.
    12. Rudolfsson, Magnus & Borén, Eleonora & Pommer, Linda & Nordin, Anders & Lestander, Torbjörn A., 2017. "Combined effects of torrefaction and pelletization parameters on the quality of pellets produced from torrefied biomass," Applied Energy, Elsevier, vol. 191(C), pages 414-424.
    13. Lam, Pak Sui & Lam, Pak Yiu & Sokhansanj, Shahab & Lim, C. Jim & Bi, Xiaotao T. & Stephen, James D. & Pribowo, Amadeus & Mabee, Warren E., 2015. "Steam explosion of oil palm residues for the production of durable pellets," Applied Energy, Elsevier, vol. 141(C), pages 160-166.
    14. Unrean, Pornkamol & Lai Fui, Bridgid Chin & Rianawati, Elisabeth & Acda, Menandro, 2018. "Comparative techno-economic assessment and environmental impacts of rice husk-to-fuel conversion technologies," Energy, Elsevier, vol. 151(C), pages 581-593.
    15. Peng, Jianghong & Bi, Xiaotao T. & Lim, C. Jim & Peng, Hanchao & Kim, Chang Soo & Jia, Dening & Zuo, Haibin, 2015. "Sawdust as an effective binder for making torrefied pellets," Applied Energy, Elsevier, vol. 157(C), pages 491-498.
    16. Samuelsson, Robert & Larsson, Sylvia H. & Thyrel, Mikael & Lestander, Torbjörn A., 2012. "Moisture content and storage time influence the binding mechanisms in biofuel wood pellets," Applied Energy, Elsevier, vol. 99(C), pages 109-115.
    17. Emadi, Bagher & Iroba, Kingsley L. & Tabil, Lope G., 2017. "Effect of polymer plastic binder on mechanical, storage and combustion characteristics of torrefied and pelletized herbaceous biomass," Applied Energy, Elsevier, vol. 198(C), pages 312-319.
    18. Sahoo, Kamalakanta & Bilek, Edward & Bergman, Richard & Mani, Sudhagar, 2019. "Techno-economic analysis of producing solid biofuels and biochar from forest residues using portable systems," Applied Energy, Elsevier, vol. 235(C), pages 578-590.
    19. Tokimatsu, Koji & Yasuoka, Rieko & Nishio, Masahiro, 2017. "Global zero emissions scenarios: The role of biomass energy with carbon capture and storage by forested land use," Applied Energy, Elsevier, vol. 185(P2), pages 1899-1906.
    20. Zhang, Qi & Zhang, Pengfei & Pei, Zhijian & Wang, Donghai, 2017. "Investigation on characteristics of corn stover and sorghum stalk processed by ultrasonic vibration-assisted pelleting," Renewable Energy, Elsevier, vol. 101(C), pages 1075-1086.
    21. Hu, Qiang & Shao, Jingai & Yang, Haiping & Yao, Dingding & Wang, Xianhua & Chen, Hanping, 2015. "Effects of binders on the properties of bio-char pellets," Applied Energy, Elsevier, vol. 157(C), pages 508-516.
    22. Liu, Zhengang & Quek, Augustine & Balasubramanian, R., 2014. "Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars," Applied Energy, Elsevier, vol. 113(C), pages 1315-1322.
    23. Wen, Jia-Long & Sun, Shao-Long & Yuan, Tong-Qi & Xu, Feng & Sun, Run-Cang, 2014. "Understanding the chemical and structural transformations of lignin macromolecule during torrefaction," Applied Energy, Elsevier, vol. 121(C), pages 1-9.
    24. Larsson, Sylvia H. & Rudolfsson, Magnus, 2012. "Temperature control in energy grass pellet production – Effects on process stability and pellet quality," Applied Energy, Elsevier, vol. 97(C), pages 24-29.
    25. Karkania, V. & Fanara, E. & Zabaniotou, A., 2012. "Review of sustainable biomass pellets production – A study for agricultural residues pellets’ market in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1426-1436.
    26. Whittaker, Carly & Shield, Ian, 2017. "Factors affecting wood, energy grass and straw pellet durability – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 1-11.
    27. Rudolfsson, Magnus & Stelte, Wolfgang & Lestander, Torbjörn A., 2015. "Process optimization of combined biomass torrefaction and pelletization for fuel pellet production – A parametric study," Applied Energy, Elsevier, vol. 140(C), pages 378-384.
    28. Song, Xiaoxu & Yang, Yang & Zhang, Meng & Zhang, Ke & Wang, Donghai, 2018. "Ultrasonic pelleting of torrefied lignocellulosic biomass for bioenergy production," Renewable Energy, Elsevier, vol. 129(PA), pages 56-62.
    29. Wang, Kui & Zhang, Yuanyuan & Sekelj, Gasper & Hopke, Philip K., 2019. "Economic analysis of a field monitored residential wood pellet boiler heating system in New York State," Renewable Energy, Elsevier, vol. 133(C), pages 500-511.
    30. Peter Križan & Miloš Matú & Ľubomír Šooš & Juraj Beniak, 2015. "Behavior of Beech Sawdust during Densification into a Solid Biofuel," Energies, MDPI, vol. 8(7), pages 1-17, June.
    31. Biswas, Amit Kumar & Rudolfsson, Magnus & Broström, Markus & Umeki, Kentaro, 2014. "Effect of pelletizing conditions on combustion behaviour of single wood pellet," Applied Energy, Elsevier, vol. 119(C), pages 79-84.
    32. Zhou, Yuguang & Zhang, Zongxi & Zhang, Yixiang & Wang, Yungang & Yu, Yang & Ji, Fang & Ahmad, Riaz & Dong, Renjie, 2016. "A comprehensive review on densified solid biofuel industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1412-1428.
    33. Tran, Khanh-Quang & Luo, Xun & Seisenbaeva, Gulaim & Jirjis, Raida, 2013. "Stump torrefaction for bioenergy application," Applied Energy, Elsevier, vol. 112(C), pages 539-546.
    34. Proskurina, Svetlana & Alakangas, Eija & Heinimö, Jussi & Mikkilä, Mirja & Vakkilainen, Esa, 2017. "A survey analysis of the wood pellet industry in Finland: Future perspectives," Energy, Elsevier, vol. 118(C), pages 692-704.
    35. Li, Hui & Liu, Xinhua & Legros, Robert & Bi, Xiaotao T. & Jim Lim, C. & Sokhansanj, Shahab, 2012. "Pelletization of torrefied sawdust and properties of torrefied pellets," Applied Energy, Elsevier, vol. 93(C), pages 680-685.
    36. Rentizelas, Athanasios A. & Tolis, Athanasios J. & Tatsiopoulos, Ilias P., 2009. "Logistics issues of biomass: The storage problem and the multi-biomass supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 887-894, May.
    37. Mohanty, Pravakar & Pant, Kamal K. & Naik, Satya Narayan & Parikh, Jigisha & Hornung, Andreas & Sahu, J.N., 2014. "Synthesis of green fuels from biogenic waste through thermochemical route – The role of heterogeneous catalyst: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 131-153.
    38. Ghiasi, Bahman & Kumar, Linoj & Furubayashi, Takaaki & Lim, C. Jim & Bi, Xiaotao & Kim, Chang Soo & Sokhansanj, Shahab, 2014. "Densified biocoal from woodchips: Is it better to do torrefaction before or after densification?," Applied Energy, Elsevier, vol. 134(C), pages 133-142.
    39. Kambo, Harpreet Singh & Dutta, Animesh, 2014. "Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization," Applied Energy, Elsevier, vol. 135(C), pages 182-191.
    40. Barbanera, M. & Lascaro, E. & Stanzione, V. & Esposito, A. & Altieri, R. & Bufacchi, M., 2016. "Characterization of pellets from mixing olive pomace and olive tree pruning," Renewable Energy, Elsevier, vol. 88(C), pages 185-191.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodolfo Picchio & Francesco Latterini & Rachele Venanzi & Walter Stefanoni & Alessandro Suardi & Damiano Tocci & Luigi Pari, 2020. "Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.
    2. Zhu, Youjian & Yang, Wei & Fan, Jiyuan & Kan, Tao & Zhang, Wennan & Liu, Heng & Cheng, Wei & Yang, Haiping & Wu, Xuehong & Chen, Hanping, 2018. "Effect of sodium carboxymethyl cellulose addition on particulate matter emissions during biomass pellet combustion," Applied Energy, Elsevier, vol. 230(C), pages 925-934.
    3. Bruno Rafael de Almeida Moreira & Ronaldo da Silva Viana & Victor Hugo Cruz & Paulo Renato Matos Lopes & Celso Tadao Miasaki & Anderson Chagas Magalhães & Paulo Alexandre Monteiro de Figueiredo & Luca, 2020. "Anti-Thermal Shock Binding of Liquid-State Food Waste to Non-Wood Pellets," Energies, MDPI, vol. 13(12), pages 1-26, June.
    4. Yang, Wei & Zhu, Youjian & Cheng, Wei & Sang, Huiying & Xu, Hanshen & Yang, Haiping & Chen, Hanping, 2018. "Effect of minerals and binders on particulate matter emission from biomass pellets combustion," Applied Energy, Elsevier, vol. 215(C), pages 106-115.
    5. Whittaker, Carly & Shield, Ian, 2017. "Factors affecting wood, energy grass and straw pellet durability – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 1-11.
    6. Kang, Kang & Zhu, Mingqiang & Sun, Guotao & Qiu, Ling & Guo, Xiaohui & Meda, Venkatesh & Sun, Runcang, 2018. "Codensification of Eucommia ulmoides Oliver stem with pyrolysis oil and char for solid biofuel: An optimization and characterization study," Applied Energy, Elsevier, vol. 223(C), pages 347-357.
    7. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Rudolfsson, Magnus & Larsson, Sylvia H. & Lestander, Torbjörn A., 2017. "New tool for improved control of sub-process interactions in rotating ring die pelletizing of torrefied biomass," Applied Energy, Elsevier, vol. 190(C), pages 835-840.
    9. Yun, Huimin & Clift, Roland & Bi, Xiaotao, 2020. "Process simulation, techno-economic evaluation and market analysis of supply chains for torrefied wood pellets from British Columbia: Impacts of plant configuration and distance to market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    10. Riva, Lorenzo & Nielsen, Henrik Kofoed & Skreiberg, Øyvind & Wang, Liang & Bartocci, Pietro & Barbanera, Marco & Bidini, Gianni & Fantozzi, Francesco, 2019. "Analysis of optimal temperature, pressure and binder quantity for the production of biocarbon pellet to be used as a substitute for coke," Applied Energy, Elsevier, vol. 256(C).
    11. Anukam, Anthony & Berghel, Jonas & Henrikson, Gunnar & Frodeson, Stefan & Ståhl, Magnus, 2021. "A review of the mechanism of bonding in densified biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    12. Rudolfsson, Magnus & Borén, Eleonora & Pommer, Linda & Nordin, Anders & Lestander, Torbjörn A., 2017. "Combined effects of torrefaction and pelletization parameters on the quality of pellets produced from torrefied biomass," Applied Energy, Elsevier, vol. 191(C), pages 414-424.
    13. Sae Byul Kang & Bong Suk Sim & Jong Jin Kim, 2017. "Volume and Mass Measurement of a Burning Wood Pellet by Image Processing," Energies, MDPI, vol. 10(5), pages 1-13, May.
    14. González, William A. & López, Diana & Pérez, Juan F., 2020. "Biofuel quality analysis of fallen leaf pellets: Effect of moisture and glycerol contents as binders," Renewable Energy, Elsevier, vol. 147(P1), pages 1139-1150.
    15. Song, Xiaobing & Zhang, Shouyu & Wu, Yuanmo & Cao, Zhongyao, 2020. "Investigation on the properties of the bio-briquette fuel prepared from hydrothermal pretreated cotton stalk and wood sawdust," Renewable Energy, Elsevier, vol. 151(C), pages 184-191.
    16. Xuyang Cui & Junhong Yang & Xinyu Shi & Wanning Lei & Tao Huang & Chao Bai, 2019. "Experimental Investigation on the Energy Consumption, Physical, and Thermal Properties of a Novel Pellet Fuel Made from Wood Residues with Microalgae as a Binder," Energies, MDPI, vol. 12(18), pages 1-26, September.
    17. Wentao Li & Mingfeng Wang & Fanbin Meng & Yifei Zhang & Bo Zhang, 2022. "A Review on the Effects of Pretreatment and Process Parameters on Properties of Pellets," Energies, MDPI, vol. 15(19), pages 1-23, October.
    18. Shui, Tao & Khatri, Vinay & Chae, Michael & Sokhansanj, Shahabaddine & Choi, Phillip & Bressler, David C., 2020. "Development of a torrefied wood pellet binder from the cross-linking between specified risk materials-derived peptides and epoxidized poly (vinyl alcohol)," Renewable Energy, Elsevier, vol. 162(C), pages 71-80.
    19. Md Tanvir Alam & Jang-Soo Lee & Sang-Yeop Lee & Dhruba Bhatta & Kunio Yoshikawa & Yong-Chil Seo, 2019. "Low Chlorine Fuel Pellets Production from the Mixture of Hydrothermally Treated Hospital Solid Waste, Pyrolytic Plastic Waste Residue and Biomass," Energies, MDPI, vol. 12(22), pages 1-17, November.
    20. Yılmaz, Hasan & Çanakcı, Murad & Topakcı, Mehmet & Karayel, Davut & Yiğit, Mete & Ortaçeşme, Derya, 2023. "In-situ pelletization of campus biomass residues: Case study for Akdeniz University," Renewable Energy, Elsevier, vol. 212(C), pages 972-983.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:105:y:2019:i:c:p:332-348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.