Global zero emissions scenarios: The role of biomass energy with carbon capture and storage by forested land use
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2015.11.077
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mondal, Md. Alam Hossain & Kennedy, Scott & Mezher, Toufic, 2014. "Long-term optimization of United Arab Emirates energy future: Policy implications," Applied Energy, Elsevier, vol. 114(C), pages 466-474.
- Anandarajah, Gabrial & Gambhir, Ajay, 2014. "India’s CO2 emission pathways to 2050: What role can renewables play?," Applied Energy, Elsevier, vol. 131(C), pages 79-86.
- Joeri Rogelj & David L. McCollum & Andy Reisinger & Malte Meinshausen & Keywan Riahi, 2013. "Probabilistic cost estimates for climate change mitigation," Nature, Nature, vol. 493(7430), pages 79-83, January.
- N. Ranger & L. Gohar & J. Lowe & S. Raper & A. Bowen & R. Ward, 2012. "Is it possible to limit global warming to no more than 1.5°C?," Climatic Change, Springer, vol. 111(3), pages 973-981, April.
- Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
- Sabine Fuss & Josep G. Canadell & Glen P. Peters & Massimo Tavoni & Robbie M. Andrew & Philippe Ciais & Robert B. Jackson & Chris D. Jones & Florian Kraxner & Nebosja Nakicenovic & Corinne Le Quéré & , 2014. "Betting on negative emissions," Nature Climate Change, Nature, vol. 4(10), pages 850-853, October.
- Detlef Vuuren & Elke Stehfest & Michel Elzen & Tom Kram & Jasper Vliet & Sebastiaan Deetman & Morna Isaac & Kees Klein Goldewijk & Andries Hof & Angelica Mendoza Beltran & Rineke Oostenrijk & Bas Ruij, 2011. "RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C," Climatic Change, Springer, vol. 109(1), pages 95-116, November.
- Tokimatsu, Koji & Konishi, Satoshi & Ishihara, Keiichi & Tezuka, Tetsuo & Yasuoka, Rieko & Nishio, Masahiro, 2016. "Role of innovative technologies under the global zero emissions scenarios," Applied Energy, Elsevier, vol. 162(C), pages 1483-1493.
- Macintosh, Andrew, 2010. "Keeping warming within the 2 °C limit after Copenhagen," Energy Policy, Elsevier, vol. 38(6), pages 2964-2975, June.
- Volker Krey & Gunnar Luderer & Leon Clarke & Elmar Kriegler, 2014. "Getting from here to there – energy technology transformation pathways in the EMF27 scenarios," Climatic Change, Springer, vol. 123(3), pages 369-382, April.
- Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2015. "Global zero-carbon energy pathways using viable mixes of nuclear and renewables," Applied Energy, Elsevier, vol. 143(C), pages 451-459.
- Joeri Rogelj & Julia Nabel & Claudine Chen & William Hare & Kathleen Markmann & Malte Meinshausen & Michiel Schaeffer & Kirsten Macey & Niklas Höhne, 2010. "Copenhagen Accord pledges are paltry," Nature, Nature, vol. 464(7292), pages 1126-1128, April.
- Atsushi Kurosawa & Hiroshi Yagita & Weisheng Zhou & Koji Tokimatsu & Yukio Yanagisawa, 1999. "Analysis of Carbon Emission Stabilization Targets and Adaptation by Integrated Assessment Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 157-175.
- Zhang, Shuwei & Bauer, Nico & Luderer, Gunnar & Kriegler, Elmar, 2014. "Role of technologies in energy-related CO2 mitigation in China within a climate-protection world: A scenarios analysis using REMIND," Applied Energy, Elsevier, vol. 115(C), pages 445-455.
- Kikuchi, Yasunori & Kimura, Seiichiro & Okamoto, Yoshitaka & Koyama, Michihisa, 2014. "A scenario analysis of future energy systems based on an energy flow model represented as functionals of technology options," Applied Energy, Elsevier, vol. 132(C), pages 586-601.
- Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S. & Kopanos, Georgios M. & Pistikopoulos, Efstratios N. & Georgiadis, Michael C., 2014. "A spatial multi-period long-term energy planning model: A case study of the Greek power system," Applied Energy, Elsevier, vol. 115(C), pages 456-482.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jiang, Xuemei & Guan, Dabo, 2016. "Determinants of global CO2 emissions growth," Applied Energy, Elsevier, vol. 184(C), pages 1132-1141.
- Yi Cheng & Chuzhi Zhao & Pradeep Neupane & Bradley Benjamin & Jiawei Wang & Tongsheng Zhang, 2023. "Applicability and Trend of the Artificial Intelligence (AI) on Bioenergy Research between 1991–2021: A Bibliometric Analysis," Energies, MDPI, vol. 16(3), pages 1-15, January.
- Stefano Caserini & Beatriz Barreto & Caterina Lanfredi & Giovanni Cappello & Dennis Ross Morrey & Mario Grosso, 2019. "Affordable CO2 negative emission through hydrogen from biomass, ocean liming, and CO2 storage," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(7), pages 1231-1248, October.
- Kaplan, P. Ozge & Witt, Jonathan W., 2019. "What is the role of distributed energy resources under scenarios of greenhouse gas reductions? A specific focus on combined heat and power systems in the industrial and commercial sectors," Applied Energy, Elsevier, vol. 235(C), pages 83-94.
- Koji Tokimatsu & Louis Dupuy & Nick Hanley, 2019.
"Using Genuine Savings for Climate Policy Evaluation with an Integrated Assessment Model,"
Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 281-307, January.
- Louis Dupuy & Koji Tokimatsu & Nick Hanley, 2017. "Using Genuine Savings for Climate Policy Evaluation with an Integrated Assessment Model," Discussion Papers in Environment and Development Economics 2017-07, University of St. Andrews, School of Geography and Sustainable Development.
- Louis Dupuy & Koji Tokimatsu & Nick Hanley, 2019. "Using Genuine Savings for Climate Policy Evaluation with an Integrated Assessment Model," Post-Print hal-03390215, HAL.
- Hafezi, Reza & Wood, David A. & Akhavan, Amir Naser & Pakseresht, Saeed, 2020. "Iran in the emerging global natural gas market: A scenario-based competitive analysis and policy assessment," Resources Policy, Elsevier, vol. 68(C).
- Zhigang Li & Jialong Zhong & Zishu Sun & Wunian Yang, 2017. "Spatial Pattern of Carbon Sequestration and Urban Sustainability: Analysis of Land-Use and Carbon Emission in Guang’an, China," Sustainability, MDPI, vol. 9(11), pages 1-24, October.
- Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
- Tokimatsu, Koji & Wachtmeister, Henrik & McLellan, Benjamin & Davidsson, Simon & Murakami, Shinsuke & Höök, Mikael & Yasuoka, Rieko & Nishio, Masahiro, 2017. "Energy modeling approach to the global energy-mineral nexus: A first look at metal requirements and the 2°C target," Applied Energy, Elsevier, vol. 207(C), pages 494-509.
- Vassilis Stavrakas & Niki-Artemis Spyridaki & Alexandros Flamos, 2018. "Striving towards the Deployment of Bio-Energy with Carbon Capture and Storage (BECCS): A Review of Research Priorities and Assessment Needs," Sustainability, MDPI, vol. 10(7), pages 1-27, June.
- Reyhaneh Banihabib & Mohsen Assadi, 2022. "The Role of Micro Gas Turbines in Energy Transition," Energies, MDPI, vol. 15(21), pages 1-22, October.
- Selosse, Sandrine & Ricci, Olivia, 2017. "Carbon capture and storage: Lessons from a storage potential and localization analysis," Applied Energy, Elsevier, vol. 188(C), pages 32-44.
- Dejian Yu & Sun Meng, 2018. "An overview of biomass energy research with bibliometric indicators," Energy & Environment, , vol. 29(4), pages 576-590, June.
- Hafezi, Reza & Akhavan, AmirNaser & Pakseresht, Saeed & A. Wood, David, 2021. "Global natural gas demand to 2025: A learning scenario development model," Energy, Elsevier, vol. 224(C).
- Tokimatsu, Koji & Höök, Mikael & McLellan, Benjamin & Wachtmeister, Henrik & Murakami, Shinsuke & Yasuoka, Rieko & Nishio, Masahiro, 2018. "Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy," Applied Energy, Elsevier, vol. 225(C), pages 1158-1175.
- Codignole Luz, Fàbio & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio, 2018. "Biomass fast pyrolysis in a shaftless screw reactor: A 1-D numerical model," Energy, Elsevier, vol. 157(C), pages 792-805.
- Weng, Yuwei & Cai, Wenjia & Wang, Can, 2021. "Evaluating the use of BECCS and afforestation under China’s carbon-neutral target for 2060," Applied Energy, Elsevier, vol. 299(C).
- Silva Herran, Diego & Tachiiri, Kaoru & Matsumoto, Ken'ichi, 2019. "Global energy system transformations in mitigation scenarios considering climate uncertainties," Applied Energy, Elsevier, vol. 243(C), pages 119-131.
- Arman Aghahosseini & Dmitrii Bogdanov & Christian Breyer, 2017. "A Techno-Economic Study of an Entirely Renewable Energy-Based Power Supply for North America for 2030 Conditions," Energies, MDPI, vol. 10(8), pages 1-28, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ajay Gambhir & Laurent Drouet & David McCollum & Tamaryn Napp & Dan Bernie & Adam Hawkes & Oliver Fricko & Petr Havlik & Keywan Riahi & Valentina Bosetti & Jason Lowe, 2017. "Assessing the Feasibility of Global Long-Term Mitigation Scenarios," Energies, MDPI, vol. 10(1), pages 1-31, January.
- Tokimatsu, Koji & Konishi, Satoshi & Ishihara, Keiichi & Tezuka, Tetsuo & Yasuoka, Rieko & Nishio, Masahiro, 2016. "Role of innovative technologies under the global zero emissions scenarios," Applied Energy, Elsevier, vol. 162(C), pages 1483-1493.
- Gunnar Luderer & Zoi Vrontisi & Christoph Bertram & Oreane Y. Edelenbosch & Robert C. Pietzcker & Joeri Rogelj & Harmen Sytze Boer & Laurent Drouet & Johannes Emmerling & Oliver Fricko & Shinichiro Fu, 2018. "Residual fossil CO2 emissions in 1.5–2 °C pathways," Nature Climate Change, Nature, vol. 8(7), pages 626-633, July.
- Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
- Silva Herran, Diego & Tachiiri, Kaoru & Matsumoto, Ken'ichi, 2019. "Global energy system transformations in mitigation scenarios considering climate uncertainties," Applied Energy, Elsevier, vol. 243(C), pages 119-131.
- Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018.
"Pathways toward zero-carbon electricity required for climate stabilization,"
Applied Energy, Elsevier, vol. 225(C), pages 884-901.
- Richard Audoly & Adrien Vogt-Schilb & Céline Guivarch, 2014. "Pathways toward Zero-Carbon Electricity Required for Climate Stabilization," Working Papers hal-01079837, HAL.
- Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Celine, 2014. "Pathways toward zero-carbon electricity required for climate stabilization," Policy Research Working Paper Series 7075, The World Bank.
- Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2017. "Pathways toward Zero-Carbon Electricity Required for Climate Stabilization," IDB Publications (Working Papers) 8498, Inter-American Development Bank.
- Richard Audoly & Adrien Vogt-Schilb & Céline Guivarch & Alexander Pfeiffer, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Post-Print halshs-01804564, HAL.
- Richard Audoly & Adrien Vogt-Schilb & Céline Guivarch, 2014. "Pathways toward Zero-Carbon Electricity Required for Climate Stabilization," CIRED Working Papers hal-01079837, HAL.
- Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
- P. A. Turner & C. B. Field & D. B. Lobell & D. L. Sanchez & K. J. Mach, 2018. "Unprecedented rates of land-use transformation in modelled climate change mitigation pathways," Nature Sustainability, Nature, vol. 1(5), pages 240-245, May.
- Gunnar Luderer & Christoph Bertram & Katherine Calvin & Enrica De Cian & Elmar Kriegler, 2015.
"Implications of Weak Near-term Climate Policies on Long-term Mitigation Pathways,"
Working Papers
2015.05, Fondazione Eni Enrico Mattei.
- Luderer, Gunnar & Bertram, Christoph & Calvin, Katherine & De Cian, Enrica & Kriegler, Elmar, 2015. "Implications of Weak Near-term Climate Policies on Long-term Mitigation Pathways," Climate Change and Sustainable Development 197537, Fondazione Eni Enrico Mattei (FEEM).
- Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2015. "Gains from emission trading under multiple stabilization targets and technological constraints," Energy Economics, Elsevier, vol. 48(C), pages 306-315.
- Nichola Raihani & David Aitken, 2011. "Uncertainty, rationality and cooperation in the context of climate change," Climatic Change, Springer, vol. 108(1), pages 47-55, September.
- Tokimatsu, Koji & Höök, Mikael & McLellan, Benjamin & Wachtmeister, Henrik & Murakami, Shinsuke & Yasuoka, Rieko & Nishio, Masahiro, 2018. "Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy," Applied Energy, Elsevier, vol. 225(C), pages 1158-1175.
- Michael Funke & Yu-Fu Chen & Nicole Glanemann, 2011.
"Time is Running Out: The 2°C Target and Optimal Climate Policies,"
Quantitative Macroeconomics Working Papers
21111, Hamburg University, Department of Economics.
- Chen, Yu-Fu & Funke, Michael & Glanemann, Nicole, 2012. "Time is Running Out: The 2°C Target and Optimal Climate Policies," SIRE Discussion Papers 2012-17, Scottish Institute for Research in Economics (SIRE).
- Yu-Fu Chen & Michael Funke & Nicole Glanemann, 2011. "Time is Running Out: The 2°C Target and Optimal Climate Policies," Dundee Discussion Papers in Economics 262, Economic Studies, University of Dundee.
- Yu-Fu Chen & Michael Funke & Nicole Glanemann, 2011. "Time is Running Out: The 2°C Target and Optimal Climate Policies," CESifo Working Paper Series 3664, CESifo.
- Frank Jotzo, 2010.
"Comparing the Copenhagen Emissions Targets,"
CCEP Working Papers
0110, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
- Jotzo, Frank, 2010. "Comparing the Copenhagen emissions targets," Working Papers 249378, Australian National University, Centre for Climate Economics & Policy.
- Frank Jotzo, 2010. "Comparing the Copenhagen emissions targets," Environmental Economics Research Hub Research Reports 1078, Environmental Economics Research Hub, Crawford School of Public Policy, The Australian National University.
- Jotzo, Frank, 2010. "Comparing the Copenhagen emissions targets," Research Reports 107577, Australian National University, Environmental Economics Research Hub.
- Johansson, Viktor & Lehtveer, Mariliis & Göransson, Lisa, 2019. "Biomass in the electricity system: A complement to variable renewables or a source of negative emissions?," Energy, Elsevier, vol. 168(C), pages 532-541.
- Ottmar Edenhofer & Christian Flachsland, 2012. "Die Nutzung globaler Gemeinschaftsgüter: Politökonomische Herausforderungen an die Klimapolitik," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 65(12), pages 29-35, June.
- Tvinnereim, Endre & Mehling, Michael, 2018. "Carbon pricing and deep decarbonisation," Energy Policy, Elsevier, vol. 121(C), pages 185-189.
- Ottmar Edenhofer & Jan Christoph Steckel & Michael Jakob, 2014. "Does Environmental Sustainability Contradict Prosperity?," Global Policy, London School of Economics and Political Science, vol. 5, pages 15-20, October.
- Trainer, Ted, 2017. "A critical analysis of the 2014 IPCC report on capital cost of mitigation and of renewable energy," Energy Policy, Elsevier, vol. 104(C), pages 214-220.
More about this item
Keywords
Zero emission scenarios; Biomass energy carbon capture and storage (BECCS); Forested land use;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:185:y:2017:i:p2:p:1899-1906. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.