IDEAS home Printed from
   My bibliography  Save this article

Role of innovative technologies under the global zero emissions scenarios


  • Tokimatsu, Koji
  • Konishi, Satoshi
  • Ishihara, Keiichi
  • Tezuka, Tetsuo
  • Yasuoka, Rieko
  • Nishio, Masahiro


This study investigated zero emissions scenarios with following two originalities compared to various existing studies. One is that we based on A1T society of SRES (Special Report on Emissions Scenario) of IPCC (Intergovernmental Panel on Climate Change) compared to existing studies on those of B1 or B2. The second one is that various innovative technologies were considered and incorporated, such as biomass energy with carbon capture and storage (BECCS), and advanced nuclear technologies including hydrogen or synfuel production. We conducted global modeling over the period 2010–2150 in which energy, materials, and biomass and foods supply costs were minimized by linear programming. We found following features of energy supply structure in A1T scenario. Since the electric demand in A1T scenario in 2100 is two times larger than the others, (1) renewable energy which solely produce electricity, nuclear, and fossil energy with CCS (FECCS) especially coal are main sources of electricity, (2) renewable which can supply heat, namely BECCS and geothermal, satisfies the sector, and (3) hydrogen from coal is introduced in transport sector. It can be concluded that the zero emission energy systems with global economic growth will be possible, by development and deployment of ambitious advanced energy technologies.

Suggested Citation

  • Tokimatsu, Koji & Konishi, Satoshi & Ishihara, Keiichi & Tezuka, Tetsuo & Yasuoka, Rieko & Nishio, Masahiro, 2016. "Role of innovative technologies under the global zero emissions scenarios," Applied Energy, Elsevier, vol. 162(C), pages 1483-1493.
  • Handle: RePEc:eee:appene:v:162:y:2016:i:c:p:1483-1493
    DOI: 10.1016/j.apenergy.2015.02.051

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Malte Meinshausen & S. Smith & K. Calvin & J. Daniel & M. Kainuma & J-F. Lamarque & K. Matsumoto & S. Montzka & S. Raper & K. Riahi & A. Thomson & G. Velders & D.P. Vuuren, 2011. "The RCP greenhouse gas concentrations and their extensions from 1765 to 2300," Climatic Change, Springer, vol. 109(1), pages 213-241, November.
    2. Fredrik Hedenus, Christian Azar and Kristian Lindgren, 2006. "Induced Technological Change in a Limited Foresight Optimization Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 109-122.
    3. Mondal, Md. Alam Hossain & Kennedy, Scott & Mezher, Toufic, 2014. "Long-term optimization of United Arab Emirates energy future: Policy implications," Applied Energy, Elsevier, vol. 114(C), pages 466-474.
    4. Azar, Christian & Lindgren, Kristian & Andersson, Bjorn A., 2003. "Global energy scenarios meeting stringent CO2 constraints--cost-effective fuel choices in the transportation sector," Energy Policy, Elsevier, vol. 31(10), pages 961-976, August.
    5. Detlef P. van Vuuren & Morna Isaac & Zbignievw W. Kundzewicz & Patrick Criqui, 2010. "Scenarios as the basis for assessment of mitigation and adaptation," Post-Print halshs-00446295, HAL.
    6. Anandarajah, Gabrial & Gambhir, Ajay, 2014. "India’s CO2 emission pathways to 2050: What role can renewables play?," Applied Energy, Elsevier, vol. 131(C), pages 79-86.
    7. Fulton, Lew & Cazzola, Pierpaolo & Cuenot, François, 2009. "IEA Mobility Model (MoMo) and its use in the ETP 2008," Energy Policy, Elsevier, vol. 37(10), pages 3758-3768, October.
    8. Valentina Bosetti, Carlo Carraro and Marzio Galeotti, 2006. "The Dynamics of Carbon and Energy Intensity in a Model of Endogenous Technical Change," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 191-206.
    9. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    10. Riahi, Keywan & Kriegler, Elmar & Johnson, Nils & Bertram, Christoph & den Elzen, Michel & Eom, Jiyong & Schaeffer, Michiel & Edmonds, Jae & Isaac, Morna & Krey, Volker & Longden, Thomas & Luderer, Gu, 2015. "Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 8-23.
    11. Kypreos, Socrates, 2005. "Modeling experience curves in MERGE (model for evaluating regional and global effects)," Energy, Elsevier, vol. 30(14), pages 2721-2737.
    12. van Vuuren, Detlef P. & van Vliet, Jasper & Stehfest, Elke, 2009. "Future bio-energy potential under various natural constraints," Energy Policy, Elsevier, vol. 37(11), pages 4220-4230, November.
    13. Ottmar Edenhofer , Brigitte Knopf, Terry Barker, Lavinia Baumstark, Elie Bellevrat, Bertrand Chateau, Patrick Criqui, Morna Isaac, Alban Kitous, Socrates Kypreos, Marian Leimbach, Kai Lessmann, Bertra, 2010. "The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    14. Detlef Vuuren & Keywan Riahi, 2011. "The relationship between short-term emissions and long-term concentration targets," Climatic Change, Springer, vol. 104(3), pages 793-801, February.
    15. Daly, Hannah E. & Ramea, Kalai & Chiodi, Alessandro & Yeh, Sonia & Gargiulo, Maurizio & Gallachóir, Brian Ó, 2014. "Incorporating travel behaviour and travel time into TIMES energy system models," Applied Energy, Elsevier, vol. 135(C), pages 429-439.
    16. Kikuchi, Yasunori & Kimura, Seiichiro & Okamoto, Yoshitaka & Koyama, Michihisa, 2014. "A scenario analysis of future energy systems based on an energy flow model represented as functionals of technology options," Applied Energy, Elsevier, vol. 132(C), pages 586-601.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Abdollahi, Elnaz & Wang, Haichao & Lahdelma, Risto, 2016. "An optimization method for multi-area combined heat and power production with power transmission network," Applied Energy, Elsevier, vol. 168(C), pages 248-256.
    2. Bhave, Amit & Taylor, Richard H.S. & Fennell, Paul & Livingston, William R. & Shah, Nilay & Dowell, Niall Mac & Dennis, John & Kraft, Markus & Pourkashanian, Mohammed & Insa, Mathieu & Jones, Jenny & , 2017. "Screening and techno-economic assessment of biomass-based power generation with CCS technologies to meet 2050 CO2 targets," Applied Energy, Elsevier, vol. 190(C), pages 481-489.
    3. repec:gam:jeners:v:11:y:2018:i:9:p:2319-:d:167442 is not listed on IDEAS
    4. repec:eee:appene:v:209:y:2018:i:c:p:65-78 is not listed on IDEAS
    5. repec:gam:jeners:v:11:y:2018:i:10:p:2539-:d:171632 is not listed on IDEAS
    6. Liu, Xuezhi & Mancarella, Pierluigi, 2016. "Modelling, assessment and Sankey diagrams of integrated electricity-heat-gas networks in multi-vector district energy systems," Applied Energy, Elsevier, vol. 167(C), pages 336-352.
    7. Wang, Enhua & Yu, Zhibin, 2016. "A numerical analysis of a composition-adjustable Kalina cycle power plant for power generation from low-temperature geothermal sources," Applied Energy, Elsevier, vol. 180(C), pages 834-848.
    8. repec:eee:appene:v:232:y:2018:i:c:p:657-684 is not listed on IDEAS
    9. repec:eee:appene:v:204:y:2017:i:c:p:254-270 is not listed on IDEAS
    10. Niu, Shuwen & Liu, Yiyue & Ding, Yongxia & Qu, Wei, 2016. "China׳s energy systems transformation and emissions peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 782-795.
    11. repec:eee:appene:v:225:y:2018:i:c:p:1158-1175 is not listed on IDEAS
    12. Alcaraz, Mar & García-Gil, Alejandro & Vázquez-Suñé, Enric & Velasco, Violeta, 2016. "Use rights markets for shallow geothermal energy management," Applied Energy, Elsevier, vol. 172(C), pages 34-46.
    13. Tokimatsu, Koji & Yasuoka, Rieko & Nishio, Masahiro, 2017. "Global zero emissions scenarios: The role of biomass energy with carbon capture and storage by forested land use," Applied Energy, Elsevier, vol. 185(P2), pages 1899-1906.
    14. Hirsch, Piotr & Duzinkiewicz, Kazimierz & Grochowski, Michał & Piotrowski, Robert, 2016. "Two-phase optimizing approach to design assessments of long distance heat transportation for CHP systems," Applied Energy, Elsevier, vol. 182(C), pages 164-176.
    15. repec:eee:appene:v:207:y:2017:i:c:p:494-509 is not listed on IDEAS
    16. repec:eee:appene:v:196:y:2017:i:c:p:1-17 is not listed on IDEAS
    17. Ancona, M.A. & Bianchi, M. & Diolaiti, E. & Giannuzzi, A. & Marano, B. & Melino, F. & Peretto, A., 2017. "A novel solar concentrator system for combined heat and power application in residential sector," Applied Energy, Elsevier, vol. 185(P2), pages 1199-1209.
    18. Zhang, Xiaochun & Myhrvold, Nathan P. & Hausfather, Zeke & Caldeira, Ken, 2016. "Climate benefits of natural gas as a bridge fuel and potential delay of near-zero energy systems," Applied Energy, Elsevier, vol. 167(C), pages 317-322.

    More about this item


    Zero emission; BECCS; SRES; A1T scenario;

    JEL classification:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:162:y:2016:i:c:p:1483-1493. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.