IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v172y2016icp34-46.html
   My bibliography  Save this article

Use rights markets for shallow geothermal energy management

Author

Listed:
  • Alcaraz, Mar
  • García-Gil, Alejandro
  • Vázquez-Suñé, Enric
  • Velasco, Violeta

Abstract

Due to the growth in demand for shallow geothermal energy, the development of an integrated management system to organize the exploitation of this resource is mandatory to protect both groundwater and the users’ rights. This paper proposes a methodology to establish a market of shallow geothermal energy use rights which will represent an advance in the management of this resource. The new concept developed to define the basic unit of management is the thermal plot. It is related to the shallow geothermal potential of a registered plot of land. This methodology is based on a GIS framework (ArcGIS, ESRI) and is composed of a geospatial database (Personal Geodatabase, ESRI) to store the main information required to manage the SGE systems, such as groundwater velocity, thermal conductivity or thermal heat capacity, and a set of GIS tools used to define, implement and control this use rights market. The exchanged heat rate and thermal disturbance are calculated on the basis of analytical solutions of heat transport equation in porous media. Thermal impacts derived from the exploitation of this resource can also be registered geographically, by taking into account the groundwater flow direction and adjusting the thermal impact to the available plot. A synthetic application of this methodology is presented for the Metropolitan Area of Barcelona, Spain.

Suggested Citation

  • Alcaraz, Mar & García-Gil, Alejandro & Vázquez-Suñé, Enric & Velasco, Violeta, 2016. "Use rights markets for shallow geothermal energy management," Applied Energy, Elsevier, vol. 172(C), pages 34-46.
  • Handle: RePEc:eee:appene:v:172:y:2016:i:c:p:34-46
    DOI: 10.1016/j.apenergy.2016.03.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916303907
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosiek, S. & Batlles, F.J., 2012. "Shallow geothermal energy applied to a solar-assisted air-conditioning system in southern Spain: Two-year experience," Applied Energy, Elsevier, vol. 100(C), pages 267-276.
    2. Florides, Georgios & Kalogirou, Soteris, 2007. "Ground heat exchangers—A review of systems, models and applications," Renewable Energy, Elsevier, vol. 32(15), pages 2461-2478.
    3. Nina Rman & Andrej Lapanje & Joerg Prestor, 2011. "Water Concession Principles for Geothermal Aquifers in the Mura-Zala Basin, NE Slovenia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3277-3299, October.
    4. Herbert, Alan & Arthur, Simon & Chillingworth, Grace, 2013. "Thermal modelling of large scale exploitation of ground source energy in urban aquifers as a resource management tool," Applied Energy, Elsevier, vol. 109(C), pages 94-103.
    5. Ondreka, Joris & Rüsgen, Maike Inga & Stober, Ingrid & Czurda, Kurt, 2007. "GIS-supported mapping of shallow geothermal potential of representative areas in south-western Germany—Possibilities and limitations," Renewable Energy, Elsevier, vol. 32(13), pages 2186-2200.
    6. Grafton, R. Quentin & Horne, James, 2014. "Water markets in the Murray-Darling Basin," Agricultural Water Management, Elsevier, vol. 145(C), pages 61-71.
    7. Schiel, Kerry & Baume, Olivier & Caruso, Geoffrey & Leopold, Ulrich, 2016. "GIS-based modelling of shallow geothermal energy potential for CO2 emission mitigation in urban areas," Renewable Energy, Elsevier, vol. 86(C), pages 1023-1036.
    8. Ozgener, Onder & Ozgener, Leyla, 2015. "Modeling of driveway as a solar collector for improving efficiency of solar assisted geothermal heat pump system: a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 210-217.
    9. Hwang, Suckho & Ooka, Ryozo & Nam, Yujin, 2010. "Evaluation of estimation method of ground properties for the ground source heat pump system," Renewable Energy, Elsevier, vol. 35(9), pages 2123-2130.
    10. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2015. "Energy and economic analysis of geothermal–solar trigeneration systems: A case study for a hotel building in Ischia," Applied Energy, Elsevier, vol. 138(C), pages 224-241.
    11. Bloemendal, Martin & Olsthoorn, Theo & Boons, Frank, 2014. "How to achieve optimal and sustainable use of the subsurface for Aquifer Thermal Energy Storage," Energy Policy, Elsevier, vol. 66(C), pages 104-114.
    12. Yiu Por Chen, 2012. "Land use rights, market transitions, and labour policy change in China (1980–84)," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 20(4), pages 705-743, October.
    13. Crossland, Jarrod & Li, Bin & Roca, Eduardo, 2013. "Is the European Union Emissions Trading Scheme (EU ETS) informationally efficient? Evidence from momentum-based trading strategies," Applied Energy, Elsevier, vol. 109(C), pages 10-23.
    14. Tokimatsu, Koji & Konishi, Satoshi & Ishihara, Keiichi & Tezuka, Tetsuo & Yasuoka, Rieko & Nishio, Masahiro, 2016. "Role of innovative technologies under the global zero emissions scenarios," Applied Energy, Elsevier, vol. 162(C), pages 1483-1493.
    15. Ozgener, Onder, 2010. "Use of solar assisted geothermal heat pump and small wind turbine systems for heating agricultural and residential buildings," Energy, Elsevier, vol. 35(1), pages 262-268.
    16. Fan, Rui & Jiang, Yiqiang & Yao, Yang & Shiming, Deng & Ma, Zuiliang, 2007. "A study on the performance of a geothermal heat exchanger under coupled heat conduction and groundwater advection," Energy, Elsevier, vol. 32(11), pages 2199-2209.
    17. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2015. "Ground coupled heat exchangers: A review and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 83-92.
    18. R. Quentin Grafton & Gary Libecap & Samuel McGlennon & Clay Landry & Bob O'Brien, 2011. "An Integrated Assessment of Water Markets: A Cross-Country Comparison," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(2), pages 219-239, Summer.
    19. Bertermann, D. & Klug, H. & Morper-Busch, L., 2015. "A pan-European planning basis for estimating the very shallow geothermal energy potentials," Renewable Energy, Elsevier, vol. 75(C), pages 335-347.
    20. Hähnlein, Stefanie & Bayer, Peter & Ferguson, Grant & Blum, Philipp, 2013. "Sustainability and policy for the thermal use of shallow geothermal energy," Energy Policy, Elsevier, vol. 59(C), pages 914-925.
    21. Koutroulis, Eftichios & Kalaitzakis, Kostas, 2003. "Development of an integrated data-acquisition system for renewable energy sources systems monitoring," Renewable Energy, Elsevier, vol. 28(1), pages 139-152.
    22. Haehnlein, Stefanie & Bayer, Peter & Blum, Philipp, 2010. "International legal status of the use of shallow geothermal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2611-2625, December.
    23. Chiu, Fan-Ping & Kuo, Hsiao-I. & Chen, Chi-Chung & Hsu, Chia-Sheng, 2015. "The energy price equivalence of carbon taxes and emissions trading—Theory and evidence," Applied Energy, Elsevier, vol. 160(C), pages 164-171.
    24. García-Gil, Alejandro & Vázquez-Suñe, Enric & Alcaraz, Maria M. & Juan, Alejandro Serrano & Sánchez-Navarro, José Ángel & Montlleó, Marc & Rodríguez, Gustavo & Lao, José, 2015. "GIS-supported mapping of low-temperature geothermal potential taking groundwater flow into account," Renewable Energy, Elsevier, vol. 77(C), pages 268-278.
    25. Yang, H. & Cui, P. & Fang, Z., 2010. "Vertical-borehole ground-coupled heat pumps: A review of models and systems," Applied Energy, Elsevier, vol. 87(1), pages 16-27, January.
    26. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Analytical simulation of groundwater flow and land surface effects on thermal plumes of borehole heat exchangers," Applied Energy, Elsevier, vol. 146(C), pages 421-433.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:rensus:v:76:y:2017:i:c:p:485-492 is not listed on IDEAS
    2. Wang, Enhua & Yu, Zhibin, 2016. "A numerical analysis of a composition-adjustable Kalina cycle power plant for power generation from low-temperature geothermal sources," Applied Energy, Elsevier, vol. 180(C), pages 834-848.
    3. repec:gam:jeners:v:11:y:2018:i:2:p:457-:d:132746 is not listed on IDEAS
    4. repec:eee:renene:v:109:y:2017:i:c:p:213-221 is not listed on IDEAS
    5. Noorollahi, Younes & Gholami Arjenaki, Hamidreza & Ghasempour, Roghayeh, 2017. "Thermo-economic modeling and GIS-based spatial data analysis of ground source heat pump systems for regional shallow geothermal mapping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 648-660.
    6. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2017. "Increased ground temperatures in urban areas: Estimation of the technical geothermal potential," Renewable Energy, Elsevier, vol. 103(C), pages 388-400.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:172:y:2016:i:c:p:34-46. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.