IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v140y2017ip1p1276-1291.html
   My bibliography  Save this article

Why do climate change scenarios return to coal?

Author

Listed:
  • Ritchie, Justin
  • Dowlatabadi, Hadi

Abstract

The following article conducts a meta-analysis to systematically investigate why Representative Concentration Pathways (RCPs) in the Fifth IPCC Assessment are illustrated with energy system reference cases dominated by coal. These scenarios of 21st-century climate change span many decades, requiring a consideration of potential developments in future society, technology, and energy systems. To understand possibilities for energy resources in this context, the research community draws from Rogner (1997) which proposes a theory of learning-by-extracting (LBE). The LBE hypothesis conceptualizes total geologic occurrences of oil, gas, and coal with a learning model of productivity that has yet to be empirically assessed.

Suggested Citation

  • Ritchie, Justin & Dowlatabadi, Hadi, 2017. "Why do climate change scenarios return to coal?," Energy, Elsevier, vol. 140(P1), pages 1276-1291.
  • Handle: RePEc:eee:energy:v:140:y:2017:i:p1:p:1276-1291
    DOI: 10.1016/j.energy.2017.08.083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217314597
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.08.083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter U. Clark & Jeremy D. Shakun & Shaun A. Marcott & Alan C. Mix & Michael Eby & Scott Kulp & Anders Levermann & Glenn A. Milne & Patrik L. Pfister & Benjamin D. Santer & Daniel P. Schrag & Susan So, 2016. "Consequences of twenty-first-century policy for multi-millennial climate and sea-level change," Nature Climate Change, Nature, vol. 6(4), pages 360-369, April.
    2. Robinson, John Bridger, 1982. "Energy backcasting A proposed method of policy analysis," Energy Policy, Elsevier, vol. 10(4), pages 337-344, December.
    3. Jan Ivar Korsbakken & Glen P. Peters & Robbie M. Andrew, 2016. "Uncertainties around reductions in China’s coal use and CO2 emissions," Nature Climate Change, Nature, vol. 6(7), pages 687-690, July.
    4. Aguilera, Roberto F., 2014. "Production costs of global conventional and unconventional petroleum," Energy Policy, Elsevier, vol. 64(C), pages 134-140.
    5. Julie Rozenberg & Céline Guivarch & Robert Lempert & Stéphane Hallegatte, 2014. "Building SSPs for climate policy analysis: a scenario elicitation methodology to map the space of possible future challenges to mitigation and adaptation," Climatic Change, Springer, vol. 122(3), pages 509-522, February.
    6. Toshihiko Masui & Kenichi Matsumoto & Yasuaki Hijioka & Tsuguki Kinoshita & Toru Nozawa & Sawako Ishiwatari & Etsushi Kato & P. Shukla & Yoshiki Yamagata & Mikiko Kainuma, 2011. "An emission pathway for stabilization at 6 Wm −2 radiative forcing," Climatic Change, Springer, vol. 109(1), pages 59-76, November.
    7. Bauer, Nico & Hilaire, Jérôme & Brecha, Robert J. & Edmonds, Jae & Jiang, Kejun & Kriegler, Elmar & Rogner, Hans-Holger & Sferra, Fabio, 2016. "Assessing global fossil fuel availability in a scenario framework," Energy, Elsevier, vol. 111(C), pages 580-592.
    8. Jae Edmonds & Marshall Wise & Hugh Pitcher & Richard Richels & Tom Wigley & Chris Maccracken, 1997. "An integrated assessment of climate change and the accelerated introduction of advanced energy technologies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 1(4), pages 311-339, December.
    9. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    10. David McCollum & Nico Bauer & Katherine Calvin & Alban Kitous & Keywan Riahi, 2014. "Fossil resource and energy security dynamics in conventional and carbon-constrained worlds," Climatic Change, Springer, vol. 123(3), pages 413-426, April.
    11. Jamie Sanderson & Sardar M. N. Islam, 2007. "Climate Change and Economic Development," Palgrave Macmillan Books, Palgrave Macmillan, number 978-0-230-59012-0, March.
    12. Mort Webster & Andrei Sokolov & John Reilly & Chris Forest & Sergey Paltsev & Adam Schlosser & Chien Wang & David Kicklighter & Marcus Sarofim & Jerry Melillo & Ronald Prinn & Henry Jacoby, 2012. "Analysis of climate policy targets under uncertainty," Climatic Change, Springer, vol. 112(3), pages 569-583, June.
    13. Grubert, Emily, 2012. "Reserve reporting in the United States coal industry," Energy Policy, Elsevier, vol. 44(C), pages 174-184.
    14. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198, September.
    15. N. R. Golledge & D. E. Kowalewski & T. R. Naish & R. H. Levy & C. J. Fogwill & E. G. W. Gasson, 2015. "The multi-millennial Antarctic commitment to future sea-level rise," Nature, Nature, vol. 526(7573), pages 421-425, October.
    16. Detlef Vuuren & Elke Stehfest & Michel Elzen & Tom Kram & Jasper Vliet & Sebastiaan Deetman & Morna Isaac & Kees Klein Goldewijk & Andries Hof & Angelica Mendoza Beltran & Rineke Oostenrijk & Bas Ruij, 2011. "RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C," Climatic Change, Springer, vol. 109(1), pages 95-116, November.
    17. Brecha, Robert J., 2008. "Emission scenarios in the face of fossil-fuel peaking," Energy Policy, Elsevier, vol. 36(9), pages 3492-3504, September.
    18. Tsang, Eric W. K., 2014. "Old and New," Management and Organization Review, Cambridge University Press, vol. 10(03), pages 390-390, November.
    19. Morris A. Adelman, 1993. "Modelling World Oil Supply," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 1-32.
    20. Dale, Michael, 2012. "Meta-analysis of non-renewable energy resource estimates," Energy Policy, Elsevier, vol. 43(C), pages 102-122.
    21. Malte Meinshausen & S. Smith & K. Calvin & J. Daniel & M. Kainuma & J-F. Lamarque & K. Matsumoto & S. Montzka & S. Raper & K. Riahi & A. Thomson & G. Velders & D.P. Vuuren, 2011. "The RCP greenhouse gas concentrations and their extensions from 1765 to 2300," Climatic Change, Springer, vol. 109(1), pages 213-241, November.
    22. Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2014. "Development of a global computable general equilibrium model coupled with detailed energy end-use technology," Applied Energy, Elsevier, vol. 128(C), pages 296-306.
    23. McGlade, C.E., 2012. "A review of the uncertainties in estimates of global oil resources," Energy, Elsevier, vol. 47(1), pages 262-270.
    24. Qi, Ye & Stern, Nicholas & Wu, Tong & Lu, Jiaqi & Green, Fergus, 2016. "China's post-coal growth," LSE Research Online Documents on Economics 67503, London School of Economics and Political Science, LSE Library.
    25. McGlade, Christophe & Speirs, Jamie & Sorrell, Steve, 2013. "Methods of estimating shale gas resources – Comparison, evaluation and implications," Energy, Elsevier, vol. 59(C), pages 116-125.
    26. Watkins, G.C., 2006. "Oil scarcity: What have the past three decades revealed?," Energy Policy, Elsevier, vol. 34(5), pages 508-514, March.
    27. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935, September.
    28. Detlef Vuuren & Timothy Carter, 2014. "Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old," Climatic Change, Springer, vol. 122(3), pages 415-429, February.
    29. Mohr, S.H. & Evans, G.M., 2011. "Long term forecasting of natural gas production," Energy Policy, Elsevier, vol. 39(9), pages 5550-5560, September.
    30. Keywan Riahi & Shilpa Rao & Volker Krey & Cheolhung Cho & Vadim Chirkov & Guenther Fischer & Georg Kindermann & Nebojsa Nakicenovic & Peter Rafaj, 2011. "RCP 8.5—A scenario of comparatively high greenhouse gas emissions," Climatic Change, Springer, vol. 109(1), pages 33-57, November.
    31. Katarzyna B. Tokarska & Nathan P. Gillett & Andrew J. Weaver & Vivek K. Arora & Michael Eby, 2016. "The climate response to five trillion tonnes of carbon," Nature Climate Change, Nature, vol. 6(9), pages 851-855, September.
    32. David L. McCollum & Jessica Jewell & Volker Krey & Morgan Bazilian & Marianne Fay & Keywan Riahi, 2016. "Quantifying uncertainties influencing the long-term impacts of oil prices on energy markets and carbon emissions," Nature Energy, Nature, vol. 1(7), pages 1-8, July.
    33. Ritchie, Justin & Dowlatabadi, Hadi, 2017. "The 1000 GtC coal question: Are cases of vastly expanded future coal combustion still plausible?," Energy Economics, Elsevier, vol. 65(C), pages 16-31.
    34. van Ruijven, Bas & van Vuuren, Detlef P., 2009. "Oil and natural gas prices and greenhouse gas emission mitigation," Energy Policy, Elsevier, vol. 37(11), pages 4797-4808, November.
    35. van Ruijven, Bas & Urban, Frauke & Benders, René M.J. & Moll, Henri C. & van der Sluijs, Jeroen P. & de Vries, Bert & van Vuuren, Detlef P., 2008. "Modeling Energy and Development: An Evaluation of Models and Concepts," World Development, Elsevier, vol. 36(12), pages 2801-2821, December.
    36. M.A. Adelman and G.C. Watkins, 2008. "Reserve Prices and Mineral Resource Theory," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-16.
    37. Messner, Sabine & Schrattenholzer, Leo, 2000. "MESSAGE–MACRO: linking an energy supply model with a macroeconomic module and solving it iteratively," Energy, Elsevier, vol. 25(3), pages 267-282.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2021. "Impact of climate change on global agricultural markets under different shared socioeconomic pathways," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 963-984, November.
    2. Ronan Connolly & Michael Connolly & Robert M. Carter & Willie Soon, 2020. "How Much Human-Caused Global Warming Should We Expect with Business-As-Usual (BAU) Climate Policies? A Semi-Empirical Assessment," Energies, MDPI, vol. 13(6), pages 1-51, March.
    3. Burgess, Matthew G. & Ritchie, Justin & Shapland, John & Pielke, Roger Jr, 2020. "IPCC baseline scenarios over-project CO2 emissions and economic growth," SocArXiv ahsxw, Center for Open Science.
    4. Nyambuu, Unurjargal & Semmler, Willi, 2020. "Climate change and the transition to a low carbon economy – Carbon targets and the carbon budget," Economic Modelling, Elsevier, vol. 84(C), pages 367-376.
    5. Graham Palmer, 2018. "A Biophysical Perspective of IPCC Integrated Energy Modelling," Energies, MDPI, vol. 11(4), pages 1-17, April.
    6. Emily Grubert, 2023. "Yellow, red, and brown energy: leveraging water footprinting concepts for decarbonizing energy systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 7239-7260, July.
    7. Zhou, Li & Duan, Maosheng & Yu, Yadong & Zhang, Xiliang, 2018. "Learning rates and cost reduction potential of indirect coal-to-liquid technology coupled with CO2 capture," Energy, Elsevier, vol. 165(PB), pages 21-32.
    8. Dae II Jeong & Alex J. Cannon & Bin Yu, 2022. "Influences of atmospheric blocking on North American summer heatwaves in a changing climate: a comparison of two Canadian Earth system model large ensembles," Climatic Change, Springer, vol. 172(1), pages 1-21, May.
    9. Julien Boulange & Yukiko Hirabayashi & Masahiro Tanoue & Toshinori Yamada, 2023. "Quantitative evaluation of flood damage methodologies under a portfolio of adaptation scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 1855-1879, September.
    10. Nikas, A. & Gambhir, A. & Trutnevyte, E. & Koasidis, K. & Lund, H. & Thellufsen, J.Z. & Mayer, D. & Zachmann, G. & Miguel, L.J. & Ferreras-Alonso, N. & Sognnaes, I. & Peters, G.P. & Colombo, E. & Howe, 2021. "Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe," Energy, Elsevier, vol. 215(PA).
    11. Wei, Yu & Zhang, Jiahao & Bai, Lan & Wang, Yizhi, 2023. "Connectedness among El Niño-Southern Oscillation, carbon emission allowance, crude oil and renewable energy stock markets: Time- and frequency-domain evidence based on TVP-VAR model," Renewable Energy, Elsevier, vol. 202(C), pages 289-309.
    12. Geoffrey Guest & Jieying Zhang & Omran Maadani & Hamidreza Shirkhani, 2020. "Incorporating the impacts of climate change into infrastructure life cycle assessments: A case study of pavement service life performance," Journal of Industrial Ecology, Yale University, vol. 24(2), pages 356-368, April.
    13. Renato Passaro & Ivana Quinto & Giuseppe Scandurra & Antonio Thomas, 2020. "How Do Energy Use and Climate Change Affect Fast-Start Finance? A Cross-Country Empirical Investigation," Sustainability, MDPI, vol. 12(22), pages 1-23, November.
    14. Deborah Panepinto & Vincenzo A. Riggio & Mariachiara Zanetti, 2021. "Analysis of the Emergent Climate Change Mitigation Technologies," IJERPH, MDPI, vol. 18(13), pages 1-11, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ritchie, Justin & Dowlatabadi, Hadi, 2017. "The 1000 GtC coal question: Are cases of vastly expanded future coal combustion still plausible?," Energy Economics, Elsevier, vol. 65(C), pages 16-31.
    2. Fujimori, S. & Kainuma, M. & Masui, T. & Hasegawa, T. & Dai, H., 2014. "The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation," Energy Policy, Elsevier, vol. 75(C), pages 379-391.
    3. Iñigo Capellán-Pérez & Mikel González-Eguino & Iñaki Arto & Alberto Ansuategi & Kishore Dhavala & Pralit Patel & Anil Markandya, 2014. "New climate scenario framework implementation in the GCAM integrated assessment model," Working Papers 2014-04, BC3.
    4. Bauer, Nico & Hilaire, Jérôme & Brecha, Robert J. & Edmonds, Jae & Jiang, Kejun & Kriegler, Elmar & Rogner, Hans-Holger & Sferra, Fabio, 2016. "Assessing global fossil fuel availability in a scenario framework," Energy, Elsevier, vol. 111(C), pages 580-592.
    5. Alison Rothwell & Brad Ridoutt & William Bellotti, 2016. "Greenhouse Gas Implications of Peri-Urban Land Use Change in a Developed City under Four Future Climate Scenarios," Land, MDPI, vol. 5(4), pages 1-23, December.
    6. Tokimatsu, Koji & Konishi, Satoshi & Ishihara, Keiichi & Tezuka, Tetsuo & Yasuoka, Rieko & Nishio, Masahiro, 2016. "Role of innovative technologies under the global zero emissions scenarios," Applied Energy, Elsevier, vol. 162(C), pages 1483-1493.
    7. Lucas, Paul L. & Nielsen, Jens & Calvin, Katherine & L. McCollum, David & Marangoni, Giacomo & Strefler, Jessica & van der Zwaan, Bob C.C. & van Vuuren, Detlef P., 2015. "Future energy system challenges for Africa: Insights from Integrated Assessment Models," Energy Policy, Elsevier, vol. 86(C), pages 705-717.
    8. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    9. Wang, Jianliang & Feng, Lianyong & Steve, Mohr & Tang, Xu & Gail, Tverberg E. & Mikael, Höök, 2015. "China's unconventional oil: A review of its resources and outlook for long-term production," Energy, Elsevier, vol. 82(C), pages 31-42.
    10. Guivarch, Céline & Monjon, Stéphanie, 2017. "Identifying the main uncertainty drivers of energy security in a low-carbon world: The case of Europe," Energy Economics, Elsevier, vol. 64(C), pages 530-541.
    11. Gernaat, David E.H.J. & Van Vuuren, Detlef P. & Van Vliet, Jasper & Sullivan, Patrick & Arent, Douglas J., 2014. "Global long-term cost dynamics of offshore wind electricity generation," Energy, Elsevier, vol. 76(C), pages 663-672.
    12. Volker Krey, 2014. "Global energy-climate scenarios and models: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 363-383, July.
    13. Mishra, Gouri Shankar & Zakerinia, Saleh & Yeh, Sonia & Teter, Jacob & Morrison, Geoff, 2014. "Mitigating climate change: Decomposing the relative roles of energy conservation, technological change, and structural shift," Energy Economics, Elsevier, vol. 44(C), pages 448-455.
    14. Nathalie Spittler & Ganna Gladkykh & Arnaud Diemer & Brynhildur Davidsdottir, 2019. "Understanding the Current Energy Paradigm and Energy System Models for More Sustainable Energy System Development," Energies, MDPI, vol. 12(8), pages 1-22, April.
    15. Lucas, Paul L. & Shukla, P.R. & Chen, Wenying & van Ruijven, Bas J. & Dhar, Subash & den Elzen, Michel G.J. & van Vuuren, Detlef P., 2013. "Implications of the international reduction pledges on long-term energy system changes and costs in China and India," Energy Policy, Elsevier, vol. 63(C), pages 1032-1041.
    16. Vivek Srikrishnan & Yawen Guan & Richard S. J. Tol & Klaus Keller, 2022. "Probabilistic projections of baseline twenty-first century CO2 emissions using a simple calibrated integrated assessment model," Climatic Change, Springer, vol. 170(3), pages 1-20, February.
    17. Nie, Yaoyu & Cai, Wenjia & Wang, Can & Huang, Guorui & Ding, Qun & Yu, Le & Li, Haoran & Ji, Duoying, 2019. "Assessment of the potential and distribution of an energy crop at 1-km resolution from 2010 to 2100 in China – The case of sweet sorghum," Applied Energy, Elsevier, vol. 239(C), pages 395-407.
    18. Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2014. "Development of a global computable general equilibrium model coupled with detailed energy end-use technology," Applied Energy, Elsevier, vol. 128(C), pages 296-306.
    19. Melnikov, Nikolai B. & O’Neill, Brian C. & Dalton, Michael G. & van Ruijven, Bas J., 2017. "Downscaling heterogeneous household outcomes in dynamic CGE models for energy-economic analysis," Energy Economics, Elsevier, vol. 65(C), pages 87-97.
    20. Graham Palmer, 2018. "A Biophysical Perspective of IPCC Integrated Energy Modelling," Energies, MDPI, vol. 11(4), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:140:y:2017:i:p1:p:1276-1291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.