IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v1y1997i4p311-339.html
   My bibliography  Save this article

An integrated assessment of climate change and the accelerated introduction of advanced energy technologies

Author

Listed:
  • Jae Edmonds
  • Marshall Wise
  • Hugh Pitcher
  • Richard Richels
  • Tom Wigley
  • Chris Maccracken

Abstract

No abstract is available for this item.

Suggested Citation

  • Jae Edmonds & Marshall Wise & Hugh Pitcher & Richard Richels & Tom Wigley & Chris Maccracken, 1997. "An integrated assessment of climate change and the accelerated introduction of advanced energy technologies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 1(4), pages 311-339, December.
  • Handle: RePEc:spr:masfgc:v:1:y:1997:i:4:p:311-339
    DOI: 10.1007/BF00464886
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF00464886
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF00464886?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parson, Edward A, 1995. "Integrated assessment and environmental policy making : In pursuit of usefulness," Energy Policy, Elsevier, vol. 23(4-5), pages 463-475.
    2. Manne, Alan & Mendelsohn, Robert & Richels, Richard, 1995. "MERGE : A model for evaluating regional and global effects of GHG reduction policies," Energy Policy, Elsevier, vol. 23(1), pages 17-34, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iñigo Capellán-Pérez & Mikel González-Eguino & Iñaki Arto & Alberto Ansuategi & Kishore Dhavala & Pralit Patel & Anil Markandya, 2014. "New climate scenario framework implementation in the GCAM integrated assessment model," Working Papers 2014-04, BC3.
    2. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    3. Yin, Xiang & Chen, Wenying & Eom, Jiyong & Clarke, Leon E. & Kim, Son H. & Patel, Pralit L. & Yu, Sha & Kyle, G. Page, 2015. "China's transportation energy consumption and CO2 emissions from a global perspective," Energy Policy, Elsevier, vol. 82(C), pages 233-248.
    4. Francesco Moresino & Emmanuel Fragnière, 2018. "Combining Behavioral Approaches with Techno-Economic Energy Models: Dealing with the Coupling Non-Linearity Issue," Energies, MDPI, vol. 11(7), pages 1-14, July.
    5. Pan, Xunzhang & Wang, Lining & Dai, Jiaquan & Zhang, Qi & Peng, Tianduo & Chen, Wenying, 2020. "Analysis of China’s oil and gas consumption under different scenarios toward 2050: An integrated modeling," Energy, Elsevier, vol. 195(C).
    6. Wilkerson, Jordan T. & Leibowicz, Benjamin D. & Turner, Delavane D. & Weyant, John P., 2015. "Comparison of integrated assessment models: Carbon price impacts on U.S. energy," Energy Policy, Elsevier, vol. 76(C), pages 18-31.
    7. Asbjørn Aaheim & Rajiv Chaturvedi & Anitha Sagadevan, 2011. "Integrated modelling approaches to analysis of climate change impacts on forests and forest management," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(2), pages 247-266, February.
    8. Panichelli, Luis & Gnansounou, Edgard, 2015. "Impact of agricultural-based biofuel production on greenhouse gas emissions from land-use change: Key modelling choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 344-360.
    9. Minyoung Roh & Seungho Jeon & Soontae Kim & Sha Yu & Almas Heshmati & Suduk Kim, 2020. "Modeling Air Pollutant Emissions in the Provincial Level Road Transportation Sector in Korea: A Case Study of the Zero-Emission Vehicle Subsidy," Energies, MDPI, vol. 13(15), pages 1-22, August.
    10. Kenneth Gillingham & Steven Smith & Ronald Sands, 2008. "Impact of bioenergy crops in a carbon dioxide constrained world: an application of the MiniCAM energy-agriculture and land use model," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(7), pages 675-701, August.
    11. Mori, Shunsuke, 2012. "An assessment of the potentials of nuclear power and carbon capture and storage in the long-term global warming mitigation options based on Asian Modeling Exercise scenarios," Energy Economics, Elsevier, vol. 34(S3), pages 421-428.
    12. Dirk-Jan van de Ven & Mikel González-Eguino & Iñaki Arto, 2018. "The potential of behavioural change for climate change mitigation: a case study for the European Union," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 853-886, August.
    13. Li, Danyang & Chen, Wenying, 2019. "TIMES modeling of the large-scale popularization of electric vehicles under the worldwide prohibition of liquid vehicle sales," Applied Energy, Elsevier, vol. 254(C).
    14. Zhou, Sheng & Kyle, G. Page & Yu, Sha & Clarke, Leon E. & Eom, Jiyong & Luckow, Patrick & Chaturvedi, Vaibhav & Zhang, Xiliang & Edmonds, James A., 2013. "Energy use and CO2 emissions of China's industrial sector from a global perspective," Energy Policy, Elsevier, vol. 58(C), pages 284-294.
    15. Elmar Kriegler & Ioanna Mouratiadou & Gunnar Luderer & Jae Edmonds & Ottmar Edenhofer, 2016. "Introduction to the RoSE special issue on the impact of economic growth and fossil fuel availability on climate protection," Climatic Change, Springer, vol. 136(1), pages 1-6, May.
    16. Waite, Michael & Cohen, Elliot & Torbey, Henri & Piccirilli, Michael & Tian, Yu & Modi, Vijay, 2017. "Global trends in urban electricity demands for cooling and heating," Energy, Elsevier, vol. 127(C), pages 786-802.
    17. Elmar Kriegler & Ioanna Mouratiadou & Gunnar Luderer & Nico Bauer & Robert J. Brecha & Katherine Calvin & Enrica Cian & Jae Edmonds & Kejun Jiang & Massimo Tavoni & Ottmar Edenhofer, 2016. "Will economic growth and fossil fuel scarcity help or hinder climate stabilization?," Climatic Change, Springer, vol. 136(1), pages 7-22, May.
    18. James Edmonds & Marshall Wise, 1998. "Building Backstop Technologies and Policies to Implement the Framework Convention on Climate Change," Energy & Environment, , vol. 9(4), pages 383-397, June.
    19. Hertel, Thomas W. & Lobell, David B., 2014. "Agricultural adaptation to climate change in rich and poor countries: Current modeling practice and potential for empirical contributions," Energy Economics, Elsevier, vol. 46(C), pages 562-575.
    20. Ritchie, Justin & Dowlatabadi, Hadi, 2017. "Why do climate change scenarios return to coal?," Energy, Elsevier, vol. 140(P1), pages 1276-1291.
    21. Shi, Wenjing & Ou, Yang & Smith, Steven J. & Ledna, Catherine M. & Nolte, Christopher G. & Loughlin, Daniel H., 2017. "Projecting state-level air pollutant emissions using an integrated assessment model: GCAM-USA," Applied Energy, Elsevier, vol. 208(C), pages 511-521.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halkos, George, 2014. "The Economics of Climate Change Policy: Critical review and future policy directions," MPRA Paper 56841, University Library of Munich, Germany.
    2. Ashish Rana & Tsuneyuki Morita, 2000. "Scenarios for greenhouse gas emission mitigation: a review of modeling of strategies and policies in integrated assessment models," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 3(2), pages 267-289, June.
    3. Ashish Rana & Tsuneyuki Morita, 2000. "Scenarios for greenhouse gas emission mitigation: a review of modeling of strategies and policies in integrated assessment models," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 3(2), pages 267-289, June.
    4. Khanna, Neha & Chapman, Duane, 1997. "Climate Policy and Petroleum Depletion in an Optimal Growth Framework," Staff Papers 121172, Cornell University, Department of Applied Economics and Management.
    5. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "An interval-valued minimax-regret analysis approach for the identification of optimal greenhouse-gas abatement strategies under uncertainty," Energy Policy, Elsevier, vol. 39(7), pages 4313-4324, July.
    6. Carolyn Fischer & Richard D. Morgenstern, 2006. "Carbon Abatement Costs: Why the Wide Range of Estimates?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 73-86.
    7. Frankel, Jeffrey A. & Bosetti, Valentina, 2011. "Politically Feasible Emission Target Formulas to Attain 460 ppm CO[subscript 2] Concentrations," Working Paper Series rwp11-016, Harvard University, John F. Kennedy School of Government.
    8. Roberto Roson & Francesco Bosello, 2007. "Estimating a Climate Change Damage Function through General Equilibrium Modeling," Working Papers 2007_08, Department of Economics, University of Venice "Ca' Foscari".
    9. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    10. Roberto Roson & Martina Sartori, 2016. "Estimation of Climate Change Damage Functions for 140 Regions in the GTAP 9 Database," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(2), pages 78-115, December.
    11. Hart, Rob & Spiro, Daniel, 2011. "The elephant in Hotelling's room," Energy Policy, Elsevier, vol. 39(12), pages 7834-7838.
    12. Pan, Xunzhang & Teng, Fei & Wang, Gehua, 2014. "A comparison of carbon allocation schemes: On the equity-efficiency tradeoff," Energy, Elsevier, vol. 74(C), pages 222-229.
    13. Uzma Hanif & Shabib Haider Syed & Rafique Ahmad & Kauser Abdullah Malik, 2010. "Economic Impact of Climate Change on the Agricultural Sector of Punjab," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 49(4), pages 771-798.
    14. Kelly C. de Bruin & Rob B. Dellink & Richard S.J. Tol, 2007. "AD-DICE: An Implementation of Adaptation in the DICE Mode," Working Papers 2007.51, Fondazione Eni Enrico Mattei.
    15. Zhu, Yongbin & Shi, Yajuan & Wang, Zheng, 2014. "How much CO2 emissions will be reduced through industrial structure change if China focuses on domestic rather than international welfare?," Energy, Elsevier, vol. 72(C), pages 168-179.
    16. Bosello, Francesco & Carraro, Carlo & De Cian, Enrica, 2013. "Adaptation can help mitigation: an integrated approach to post-2012 climate policy," Environment and Development Economics, Cambridge University Press, vol. 18(3), pages 270-290, June.
    17. Elin Berg & Snorre Kverndokk & Knut Einar Rosendahl, 1999. "Optimal Oil Exploration under Climate Treaties," Discussion Papers 245, Statistics Norway, Research Department.
    18. Valentina Bosetti & Jeffrey Frankel, 2012. "Politically Feasible Emissions Targets to Attain 460 ppm CO 2 Concentrations," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 6(1), pages 86-109.
    19. Zhu, Xueqin & van Ierland, Ekko, 2006. "The enlargement of the European Union: Effects on trade and emissions of greenhouse gases," Ecological Economics, Elsevier, vol. 57(1), pages 1-14, April.
    20. Erica Perego & Lionel Fontagné & Gianluca Santoni, 2022. "MaGE 3.1: Long-term macroeconomic projections of the World economy," International Economics, CEPII research center, issue 172, pages 168-189.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:1:y:1997:i:4:p:311-339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.