IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v208y2017icp511-521.html
   My bibliography  Save this article

Projecting state-level air pollutant emissions using an integrated assessment model: GCAM-USA

Author

Listed:
  • Shi, Wenjing
  • Ou, Yang
  • Smith, Steven J.
  • Ledna, Catherine M.
  • Nolte, Christopher G.
  • Loughlin, Daniel H.

Abstract

Integrated Assessment Models (IAMs) characterize the interactions among human and earth systems. IAMs typically have been applied to investigate future energy, land use, and emission pathways at global to continental scales. Recent directions in IAM development include enhanced technological detail, greater spatial and temporal resolution, and the inclusion of air pollutant emissions. These developments expand the potential applications of IAMs to include support for air quality management and for coordinated environmental, climate, and energy planning. Furthermore, these IAMs could help decision makers more fully understand tradeoffs and synergies among policy goals, identify important cross-sector interactions, and, via scenarios, consider uncertainties in factors such as population and economic growth, technology development, human behavior, and climate change. A version of the Global Change Assessment Model with U.S. state-level resolution (GCAM-USA) is presented that incorporates U.S.-specific emission factors, pollutant controls, and air quality and energy regulations. Resulting air pollutant emission outputs are compared to U.S. Environmental Protection Agency 2011 and projected inventories. A Quality Metric is used to quantify GCAM-USA performance for several pollutants at the sectoral and state levels. This information provides insights into the types of applications for which GCAM-USA is currently well suited and highlights where additional refinement may be warranted. While this analysis is specific to the U.S., the results indicate more generally the importance of enhanced spatial resolution and of considering national and sub-national regulatory constraints within IAMs.

Suggested Citation

  • Shi, Wenjing & Ou, Yang & Smith, Steven J. & Ledna, Catherine M. & Nolte, Christopher G. & Loughlin, Daniel H., 2017. "Projecting state-level air pollutant emissions using an integrated assessment model: GCAM-USA," Applied Energy, Elsevier, vol. 208(C), pages 511-521.
  • Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:511-521
    DOI: 10.1016/j.apenergy.2017.09.122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917314125
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.09.122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:208:y:2017:i:c:p:511-521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.