IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p9107-d614415.html
   My bibliography  Save this article

Climate Change and Thermal Comfort in Top Tourist Destinations—The Case of Santorini (Greece)

Author

Listed:
  • George Katavoutas

    (Institute for Environmental Research & Sustainable Development (IERSD), National Observatory of Athens, GR-15236 Athens, Greece)

  • Dimitra Founda

    (Institute for Environmental Research & Sustainable Development (IERSD), National Observatory of Athens, GR-15236 Athens, Greece)

  • Gianna Kitsara

    (Institute for Environmental Research & Sustainable Development (IERSD), National Observatory of Athens, GR-15236 Athens, Greece)

  • Christos Giannakopoulos

    (Institute for Environmental Research & Sustainable Development (IERSD), National Observatory of Athens, GR-15236 Athens, Greece)

Abstract

The Mediterranean area is one of the most visited tourist destinations of the world, but it has also been recognized as one of the most vulnerable to climate change areas worldwide with respect to increased thermal risk. The study focuses on a top worldwide tourist destination of the Mediterranean, Santorini Island in Greece, and aims to assess the past, present and future thermal environment in the island based on the advanced Universal Thermal Climate Index (UTCI). The study utilizes historical observations capturing past (late 19th to early 20th century) and more recent (1982–2019) time periods, while future projections are realized based on four regional climate models (RCMs) under the weak mitigation scenario (RCP4.5) and the non-mitigation scenario with high emissions (RCP8.5). The frequency of cold stress conditions at midday decreases during winter and early spring months by up to 19.8% (January) in the recent period compared to the historical one, while heat stress conditions increase in summer by up to 22.4% (August). Future projections suggest progressive shifts of the UTCI towards higher values in the future and an increase in the exposure time under heat stress depending on the RCM and adopted scenario. The increase in moderate and strong heat stress conditions is mainly expected during the summer months (June, July, August); nevertheless, a noticeable increase is also foreseen in September and May. The highest occurrences of favorable (no thermal stress) conditions are also projected to shift by one month, from June to May and from September to October, in the future.

Suggested Citation

  • George Katavoutas & Dimitra Founda & Gianna Kitsara & Christos Giannakopoulos, 2021. "Climate Change and Thermal Comfort in Top Tourist Destinations—The Case of Santorini (Greece)," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9107-:d:614415
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/9107/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/9107/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Franziska Wolf & Walter Leal Filho & Priyatma Singh & Nicolai Scherle & Dirk Reiser & John Telesford & Ivana Božić Miljković & Peni Hausia Havea & Chunlan Li & Dinesh Surroop & Marina Kovaleva, 2021. "Influences of Climate Change on Tourism Development in Small Pacific Island States," Sustainability, MDPI, vol. 13(8), pages 1-22, April.
    2. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    3. Scott, Daniel & Hall, C. Michael & Gössling, Stefan, 2019. "Global tourism vulnerability to climate change," Annals of Tourism Research, Elsevier, vol. 77(C), pages 49-61.
    4. Daniel Scott, 2021. "Sustainable Tourism and the Grand Challenge of Climate Change," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    5. Allison Thomson & Katherine Calvin & Steven Smith & G. Kyle & April Volke & Pralit Patel & Sabrina Delgado-Arias & Ben Bond-Lamberty & Marshall Wise & Leon Clarke & James Edmonds, 2011. "RCP4.5: a pathway for stabilization of radiative forcing by 2100," Climatic Change, Springer, vol. 109(1), pages 77-94, November.
    6. Amelung, Bas & Nicholls, Sarah, 2014. "Implications of climate change for tourism in Australia," Tourism Management, Elsevier, vol. 41(C), pages 228-244.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    2. Turner, Sean W.D. & Hejazi, Mohamad & Kim, Son H. & Clarke, Leon & Edmonds, Jae, 2017. "Climate impacts on hydropower and consequences for global electricity supply investment needs," Energy, Elsevier, vol. 141(C), pages 2081-2090.
    3. Teotónio, Carla & Fortes, Patrícia & Roebeling, Peter & Rodriguez, Miguel & Robaina-Alves, Margarita, 2017. "Assessing the impacts of climate change on hydropower generation and the power sector in Portugal: A partial equilibrium approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 788-799.
    4. Katopodis, Theodoros & Markantonis, Iason & Vlachogiannis, Diamando & Politi, Nadia & Sfetsos, Athanasios, 2021. "Assessing climate change impacts on wind characteristics in Greece through high resolution regional climate modelling," Renewable Energy, Elsevier, vol. 179(C), pages 427-444.
    5. José Ruiz-Meza & Julio Brito & Jairo R. Montoya-Torres, 2021. "Multi-Objective Fuzzy Tourist Trip Design Problem with Heterogeneous Preferences and Sustainable Itineraries," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    6. Kang, Hyunwoo & Sridhar, Venkataramana & Mills, Bradford F. & Hession, W. Cully & Ogejo, Jactone A., 2019. "Economy-wide climate change impacts on green water droughts based on the hydrologic simulations," Agricultural Systems, Elsevier, vol. 171(C), pages 76-88.
    7. Calvin, Katherine & Wise, Marshall & Clarke, Leon & Edmonds, James & Jones, Andrew & Thomson, Allison, 2014. "Near-term limits to mitigation: Challenges arising from contrary mitigation effects from indirect land-use change and sulfur emissions," Energy Economics, Elsevier, vol. 42(C), pages 233-239.
    8. Mishra, Gouri Shankar & Zakerinia, Saleh & Yeh, Sonia & Teter, Jacob & Morrison, Geoff, 2014. "Mitigating climate change: Decomposing the relative roles of energy conservation, technological change, and structural shift," Energy Economics, Elsevier, vol. 44(C), pages 448-455.
    9. Hem H Dholakia & Vimal Mishra & Amit Garg, 2015. "Predicted Increases in Heat related Mortality under Climate Change in Urban India," Working Papers id:7115, eSocialSciences.
    10. Nir Y. Krakauer, 2014. "Economic Growth Assumptions in Climate and Energy Policy," Sustainability, MDPI, vol. 6(3), pages 1-14, March.
    11. Vyddiyaratnam Pathmanandakumar & Sheeba Nettukandy Chenoli & Hong Ching Goh, 2021. "Linkages between Climate Change and Coastal Tourism: A Bibliometric Analysis," Sustainability, MDPI, vol. 13(19), pages 1-21, September.
    12. Matsumoto, Ken׳ichi & Andriosopoulos, Kostas, 2016. "Energy security in East Asia under climate mitigation scenarios in the 21st century," Omega, Elsevier, vol. 59(PA), pages 60-71.
    13. Scott, Daniel & Gössling, Stefan, 2022. "A review of research into tourism and climate change - Launching the annals of tourism research curated collection on tourism and climate change," Annals of Tourism Research, Elsevier, vol. 95(C).
    14. Ritchie, Justin & Dowlatabadi, Hadi, 2017. "The 1000 GtC coal question: Are cases of vastly expanded future coal combustion still plausible?," Energy Economics, Elsevier, vol. 65(C), pages 16-31.
    15. Ruffato-Ferreira, Vera & da Costa Barreto, Renata & Oscar Júnior, Antonio & Silva, Wanderson Luiz & de Berrêdo Viana, Daniel & do Nascimento, José Antonio Sena & de Freitas, Marcos Aurélio Vasconcelos, 2017. "A foundation for the strategic long-term planning of the renewable energy sector in Brazil: Hydroelectricity and wind energy in the face of climate change scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1124-1137.
    16. Jean-François Lamarque & G. Kyle & Malte Meinshausen & Keywan Riahi & Steven Smith & Detlef Vuuren & Andrew Conley & Francis Vitt, 2011. "Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways," Climatic Change, Springer, vol. 109(1), pages 191-212, November.
    17. Silva Herran, Diego & Tachiiri, Kaoru & Matsumoto, Ken'ichi, 2019. "Global energy system transformations in mitigation scenarios considering climate uncertainties," Applied Energy, Elsevier, vol. 243(C), pages 119-131.
    18. Hailu Wondmageghu Tenfie & Fokke Saathoff & Dereje Hailu & Alemayehu Gebissa, 2022. "Selection of Representative General Circulation Models for Climate Change Study Using Advanced Envelope-Based and Past Performance Approach on Transboundary River Basin, a Case of Upper Blue Nile Basi," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    19. Dholakia, Hem H. & Mishra, Vimal & Garg, Amit, 2015. "Predicted Increases in Heat related Mortality under Climate Change in Urban India," IIMA Working Papers WP2015-05-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    20. Shakil Ahmad Romshoo & Asif Marazi, 2022. "Impact of climate change on snow precipitation and streamflow in the Upper Indus Basin ending twenty-first century," Climatic Change, Springer, vol. 170(1), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9107-:d:614415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.