IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i9p3492-3504.html
   My bibliography  Save this article

Emission scenarios in the face of fossil-fuel peaking

Author

Listed:
  • Brecha, Robert J.

Abstract

Emissions scenarios used by the Intergovernmental Panel on Climate Change (IPCC) are based on detailed energy system models in which demographics, technology and economics are used to generate projections of future world energy consumption, and therefore, of greenhouse gas emissions. We propose in this paper that it is useful to look at a qualitative model of the energy system, backed by data from short- and medium-term trends, to gain a sense of carbon emission bounds. Here we look at what may be considered a lower bound for 21st century emissions given two assumptions: first, that extractable fossil-fuel resources follow the trends assumed by "peak oil" adherents, and second, that no climate mitigation policies are put in place to limit emissions. If resources, and more importantly, extraction rates, of fossil fuels are more limited than posited in full energy-system models, a supply-driven emissions scenario results; however, we show that even in this "peak fossil-fuel" limit, carbon emissions are high enough to surpass 550 ppm or 2 °C climate protection guardrails. Some indicators are presented that the scenario presented here should not be disregarded, and comparisons are made to the outputs of emission scenarios used for the IPCC reports.

Suggested Citation

  • Brecha, Robert J., 2008. "Emission scenarios in the face of fossil-fuel peaking," Energy Policy, Elsevier, vol. 36(9), pages 3492-3504, September.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:9:p:3492-3504
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00238-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reynolds, Douglas B., 1999. "The mineral economy: how prices and costs can falsely signal decreasing scarcity," Ecological Economics, Elsevier, vol. 31(1), pages 155-166, October.
    2. Baffes, John, 2007. "Oil spills on other commodities," Resources Policy, Elsevier, vol. 32(3), pages 126-134, September.
    3. Emma Marris, 2006. "Drink the best and drive the rest," Nature, Nature, vol. 444(7120), pages 670-672, December.
    4. Soderbergh, Bengt & Robelius, Fredrik & Aleklett, Kjell, 2007. "A crash programme scenario for the Canadian oil sands industry," Energy Policy, Elsevier, vol. 35(3), pages 1931-1947, March.
    5. Reynolds, Doug, 1998. "Entropy subsidies," Energy Policy, Elsevier, vol. 26(2), pages 113-118, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iñigo Capellán-Pérez & Mikel González-Eguino & Iñaki Arto & Alberto Ansuategi & Kishore Dhavala & Pralit Patel & Anil Markandya, 2014. "New climate scenario framework implementation in the GCAM integrated assessment model," Working Papers 2014-04, BC3.
    2. Steve Newbold & Charles Griffiths & Christopher C. Moore & Ann Wolverton & Elizabeth Kopits, 2010. "The "Social Cost of Carbon" Made Simple," NCEE Working Paper Series 201007, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Aug 2010.
    3. Ediger, Volkan Ş. & Berk, Istemi, 2023. "Future availability of natural gas: Can it support sustainable energy transition?," Resources Policy, Elsevier, vol. 85(PA).
    4. Rehfeldt, Matthias & Fleiter, Tobias & Herbst, Andrea & Eidelloth, Stefan, 2020. "Fuel switching as an option for medium-term emission reduction - A model-based analysis of reactions to price signals and regulatory action in German industry," Energy Policy, Elsevier, vol. 147(C).
    5. Rahman, Farahiyah Abdul & Aziz, Md Maniruzzaman A. & Saidur, R. & Bakar, Wan Azelee Wan Abu & Hainin, M.R & Putrajaya, Ramadhansyah & Hassan, Norhidayah Abdul, 2017. "Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 112-126.
    6. Bauer, Nico & Hilaire, Jérôme & Brecha, Robert J. & Edmonds, Jae & Jiang, Kejun & Kriegler, Elmar & Rogner, Hans-Holger & Sferra, Fabio, 2016. "Assessing global fossil fuel availability in a scenario framework," Energy, Elsevier, vol. 111(C), pages 580-592.
    7. Ward, James D. & Mohr, Steve H. & Myers, Baden R. & Nel, Willem P., 2012. "High estimates of supply constrained emissions scenarios for long-term climate risk assessment," Energy Policy, Elsevier, vol. 51(C), pages 598-604.
    8. Höök, M. & Söderbergh, B. & Aleklett, K., 2009. "Future Danish oil and gas export," Energy, Elsevier, vol. 34(11), pages 1826-1834.
    9. Höök, Mikael & Tang, Xu, 2013. "Depletion of fossil fuels and anthropogenic climate change—A review," Energy Policy, Elsevier, vol. 52(C), pages 797-809.
    10. Manfroni, Michele & Bukkens, Sandra G.F. & Giampietro, Mario, 2021. "The declining performance of the oil sector: Implications for global climate change mitigation," Applied Energy, Elsevier, vol. 298(C).
    11. Verbruggen, Aviel & Al Marchohi, Mohamed, 2010. "Views on peak oil and its relation to climate change policy," Energy Policy, Elsevier, vol. 38(10), pages 5572-5581, October.
    12. Pereira, Alfredo M. & Pereira, Rui M., 2014. "On the environmental, economic and budgetary impacts of fossil fuel prices: A dynamic general equilibrium analysis of the Portuguese case," Energy Economics, Elsevier, vol. 42(C), pages 248-261.
    13. Robert J. Brecha, 2013. "Ten Reasons to Take Peak Oil Seriously," Sustainability, MDPI, vol. 5(2), pages 1-31, February.
    14. Howden-Chapman, Philippa & Viggers, Helen & Chapman, Ralph & O’Sullivan, Kimberley & Telfar Barnard, Lucy & Lloyd, Bob, 2012. "Tackling cold housing and fuel poverty in New Zealand: A review of policies, research, and health impacts," Energy Policy, Elsevier, vol. 49(C), pages 134-142.
    15. Rye, Craig D. & Jackson, Tim, 2018. "A review of EROEI-dynamics energy-transition models," Energy Policy, Elsevier, vol. 122(C), pages 260-272.
    16. Capellán-Pérez, Iñigo & Mediavilla, Margarita & de Castro, Carlos & Carpintero, Óscar & Miguel, Luis Javier, 2014. "Fossil fuel depletion and socio-economic scenarios: An integrated approach," Energy, Elsevier, vol. 77(C), pages 641-666.
    17. Chiari, Luca & Zecca, Antonio, 2011. "Constraints of fossil fuels depletion on global warming projections," Energy Policy, Elsevier, vol. 39(9), pages 5026-5034, September.
    18. Ritchie, Justin & Dowlatabadi, Hadi, 2017. "Why do climate change scenarios return to coal?," Energy, Elsevier, vol. 140(P1), pages 1276-1291.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Capellán-Pérez, Iñigo & Mediavilla, Margarita & de Castro, Carlos & Carpintero, Óscar & Miguel, Luis Javier, 2014. "Fossil fuel depletion and socio-economic scenarios: An integrated approach," Energy, Elsevier, vol. 77(C), pages 641-666.
    2. Rehrl, Tobias & Friedrich, Rainer, 2006. "Modelling long-term oil price and extraction with a Hubbert approach: The LOPEX model," Energy Policy, Elsevier, vol. 34(15), pages 2413-2428, October.
    3. Robert J. Brecha, 2013. "Ten Reasons to Take Peak Oil Seriously," Sustainability, MDPI, vol. 5(2), pages 1-31, February.
    4. Sorrell, Steve & Miller, Richard & Bentley, Roger & Speirs, Jamie, 2010. "Oil futures: A comparison of global supply forecasts," Energy Policy, Elsevier, vol. 38(9), pages 4990-5003, September.
    5. Das, Debojyoti & Bhatia, Vaneet & Kumar, Surya Bhushan & Basu, Sankarshan, 2022. "Do precious metals hedge crude oil volatility jumps?," International Review of Financial Analysis, Elsevier, vol. 83(C).
    6. Bedoui, Rihab & Braiek, Sana & Guesmi, Khaled & Chevallier, Julien, 2019. "On the conditional dependence structure between oil, gold and USD exchange rates: Nested copula based GJR-GARCH model," Energy Economics, Elsevier, vol. 80(C), pages 876-889.
    7. Karakotsios, Achillefs & Katrakilidis, Constantinos & Kroupis, Nikolaos, 2021. "The dynamic linkages between food prices and oil prices. Does asymmetry matter?," The Journal of Economic Asymmetries, Elsevier, vol. 23(C).
    8. Ugo Bardi & Alessandro Lavacchi, 2009. "A Simple Interpretation of Hubbert’s Model of Resource Exploitation," Energies, MDPI, vol. 2(3), pages 1-16, August.
    9. Yip, Pick Schen & Brooks, Robert & Do, Hung Xuan & Nguyen, Duc Khuong, 2020. "Dynamic volatility spillover effects between oil and agricultural products," International Review of Financial Analysis, Elsevier, vol. 69(C).
    10. de Albuquerquemello, Vinícius Phillipe & de Medeiros, Rennan Kertlly & da Nóbrega Besarria, Cássio & Maia, Sinézio Fernandes, 2018. "Forecasting crude oil price: Does exist an optimal econometric model?," Energy, Elsevier, vol. 155(C), pages 578-591.
    11. Ferrari, Davide & Ravazzolo, Francesco & Vespignani, Joaquin, 2021. "Forecasting energy commodity prices: A large global dataset sparse approach," Energy Economics, Elsevier, vol. 98(C).
    12. Natanelov, Valeri & McKenzie, Andrew M. & Van Huylenbroeck, Guido, 2013. "Crude oil–corn–ethanol – nexus: A contextual approach," Energy Policy, Elsevier, vol. 63(C), pages 504-513.
    13. Halkos, George E. & Tzeremes, Nickolaos G., 2011. "Oil consumption and economic efficiency: A comparative analysis of advanced, developing and emerging economies," Ecological Economics, Elsevier, vol. 70(7), pages 1354-1362, May.
    14. Julien Chevallier & Florian Ielpo, 2013. "Volatility spillovers in commodity markets," Applied Economics Letters, Taylor & Francis Journals, vol. 20(13), pages 1211-1227, September.
    15. Ledebur, Oliver von & Schmitz, Jochen, 2009. "Maispreisverhalten – Maispreistransmission während des Preisbooms an den Terminmärkten," Thünen Working Paper 126939, Johann Heinrich von Thünen-Institut (vTI), Federal Research Institute for Rural Areas, Forestry and Fisheries.
    16. James J Elser & Timothy J Elser & Stephen R Carpenter & William A Brock, 2014. "Regime Shift in Fertilizer Commodities Indicates More Turbulence Ahead for Food Security," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-7, May.
    17. Cheng, Sheng & Cao, Yan, 2019. "On the relation between global food and crude oil prices: An empirical investigation in a nonlinear framework," Energy Economics, Elsevier, vol. 81(C), pages 422-432.
    18. Tiwari, Aviral Kumar & Aye, Goodness C. & Gupta, Rangan & Gkillas, Konstantinos, 2020. "Gold-oil dependence dynamics and the role of geopolitical risks: Evidence from a Markov-switching time-varying copula model," Energy Economics, Elsevier, vol. 88(C).
    19. Lukáš Režný & Vladimír Bureš, 2019. "Energy Transition Scenarios and Their Economic Impacts in the Extended Neoclassical Model of Economic Growth," Sustainability, MDPI, vol. 11(13), pages 1-25, July.
    20. Maurice, Noemie & Davis, Junior, 2011. "Unravelling the underlying causes of price volatility in world coffee and cocoa commodity markets," MPRA Paper 43813, University Library of Munich, Germany, revised 2012.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:9:p:3492-3504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.