IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Global commodity cycles and linkages a FAVAR approach

  • Lombardi, Marco J.
  • Osbat, Chiara
  • Schnatz, Bernd

In this paper we examine linkages across non-energy commodity price developments by means of a factor-augmented VAR model (FAVAR). From a set of non-energy commodity price series, we extract two factors, which we identify as common trends in metals and a food prices. These factors are included in a FAVAR model together with selected macroeconomic variables, which have been associated with developments in commodity prices. Impulse response functions confirm that exchange rates and of economic activity affect individual nonenergy commodity prices, but we fail to find strong spillovers from oil to non-oil commodity prices or an impact of the interest rate. In addition, we find that individual commodity prices are affected by common trends captured by the food and metals factors. JEL Classification: E3, F3

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp1170.pdf
Download Restriction: no

Paper provided by European Central Bank in its series Working Paper Series with number 1170.

as
in new window

Length:
Date of creation: Apr 2010
Date of revision:
Handle: RePEc:ecb:ecbwps:20101170
Contact details of provider: Postal:
60640 Frankfurt am Main, Germany

Phone: +49 69 1344 0
Fax: +49 69 1344 6000
Web page: http://www.ecb.europa.eu/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. A. Anzuini & M. J. Lombardi & P. Pagano, 2013. "The Impact of Monetary Policy Shocks on Commodity Prices," International Journal of Central Banking, International Journal of Central Banking, vol. 9(3), pages 125-150, September.
  2. Banbura, Marta & Giannone, Domenico & Reichlin, Lucrezia, 2007. "Bayesian VARs with Large Panels," CEPR Discussion Papers 6326, C.E.P.R. Discussion Papers.
  3. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-69, June.
  4. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
  5. Baffes, John, 2007. "Oil spills on other commodities," Policy Research Working Paper Series 4333, The World Bank.
  6. Kilian, Lutz, 2005. "Exogenous Oil Supply Shocks: How Big Are They and How Much do they Matter for the US Economy?," CEPR Discussion Papers 5131, C.E.P.R. Discussion Papers.
  7. M. Ayhan Kose & Christopher Otrok & Charles H. Whiteman, 2003. "International Business Cycles: World, Region, and Country-Specific Factors," American Economic Review, American Economic Association, vol. 93(4), pages 1216-1239, September.
  8. Banerjee, Anindya & Marcellino, Massimiliano, 2008. "Factor-augmented Error Correction Models," CEPR Discussion Papers 6707, C.E.P.R. Discussion Papers.
  9. Melisso Boschi & Luca Pieroni, 2008. "Aluminium market and the macroeconomy," Quaderni del Dipartimento di Economia, Finanza e Statistica 42/2008, Università di Perugia, Dipartimento Economia.
  10. Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2009. "Forecasting Large Datasets with Bayesian Reduced Rank Multivariate Models," Economics Working Papers ECO2009/31, European University Institute.
  11. Akram, Q. Farooq, 2009. "Commodity prices, interest rates and the dollar," Energy Economics, Elsevier, vol. 31(6), pages 838-851, November.
  12. Reitz, Stefan & Slopek, Ulf Dieter, 2008. "Nonlinear oil price dynamics: a tale of heterogeneous speculators?," Discussion Paper Series 1: Economic Studies 2008,10, Deutsche Bundesbank, Research Centre.
  13. Johansen, S ren, 2000. "A Bartlett Correction Factor For Tests On The Cointegrating Relations," Econometric Theory, Cambridge University Press, vol. 16(05), pages 740-778, October.
  14. Kausik Chaudhuri, 2001. "Long-run prices of primary commodities and oil prices," Applied Economics, Taylor & Francis Journals, vol. 33(4), pages 531-538.
  15. Caballero, Ricardo & Farhi, Emmanuel & Gourinchas, Pierre-Olivier, 2008. "Financial Crash, Commodity Prices and Global Imbalances," CEPR Discussion Papers 7064, C.E.P.R. Discussion Papers.
  16. Mitchell, Donald, 2008. "A note on rising food prices," Policy Research Working Paper Series 4682, The World Bank.
  17. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  18. Pindyck, Robert S & Rotemberg, Julio J, 1990. "The Excess Co-movement of Commodity Prices," Economic Journal, Royal Economic Society, vol. 100(403), pages 1173-89, December.
  19. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
  20. Jesus Crespo Cuaresma & Andreas Breitenfellner, . "Crude Oil Prices and the Euro-Dollar Exchange Rate: A Forecasting Exercise," Working Papers 2008-08, Faculty of Economics and Statistics, University of Innsbruck.
  21. Jeffrey A. Frankel, 2008. "The Effect of Monetary Policy on Real Commodity Prices," NBER Chapters, in: Asset Prices and Monetary Policy, pages 291-333 National Bureau of Economic Research, Inc.
  22. Vansteenkiste, Isabel, 2009. "How important are common factors in driving non-fuel commodity prices? A dynamic factor analysis," Working Paper Series 1072, European Central Bank.
  23. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
  24. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, Oxford University Press, vol. 120(1), pages 387-422.
  25. Alessio Anzuini & Patrizio Pagano & Massimiliano Pisani, 2007. "Oil supply news in a VAR: Information from financial markets," Temi di discussione (Economic working papers) 632, Bank of Italy, Economic Research and International Relations Area.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:20101170. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Official Publications)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.