IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/56546.html
   My bibliography  Save this paper

Co-movement of commodity prices – results from dynamic time warping classification

Author

Listed:
  • Śmiech, Sławomir

Abstract

Several factors are responsible for difficulties in describing the behaviour of commodity prices. Firstly, there are numerous different categories of commodities. Secondly, some categories overlap with other categories, while others indirectly compete in the market. Thirdly, although essentially commodity prices react to changes in economic conditions or exchange rates, to a large extent these prices depend on supply disturbances. However, in recent years commodity prices co-move, and researchers, beginning with Pindyck and Rotemberg (1990), have been trying to explain this phenomenon. The objective of the article is to conduct the classification of the series of commodity prices in the pre-crisis and after-crisis periods. The results of such classification will reveal whether co-movement of commodity prices is the same in both periods. The analysis is based on monthly data from the period January 1990 to February 2014. All prices and price indices are published by the World Bank. The results obtained in dynamic time warping clustering reveal that co-movement of commodity prices is more evident in the pre-crisis period. There are only several paths which determine commodity prices.

Suggested Citation

  • Śmiech, Sławomir, 2014. "Co-movement of commodity prices – results from dynamic time warping classification," MPRA Paper 56546, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:56546
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/56546/1/MPRA_paper_56546.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Lutz Kilian, 2008. "Exogenous Oil Supply Shocks: How Big Are They and How Much Do They Matter for the U.S. Economy?," The Review of Economics and Statistics, MIT Press, vol. 90(2), pages 216-240, May.
    2. Akram, Q. Farooq, 2009. "Commodity prices, interest rates and the dollar," Energy Economics, Elsevier, vol. 31(6), pages 838-851, November.
    3. Natanelov, Valeri & Alam, Mohammad J. & McKenzie, Andrew M. & Van Huylenbroeck, Guido, 2011. "Is there co-movement of agricultural commodities futures prices and crude oil?," Energy Policy, Elsevier, vol. 39(9), pages 4971-4984, September.
    4. Gohin, A. & Chantret, F., 2010. "The long-run impact of energy prices on world agricultural markets: The role of macro-economic linkages," Energy Policy, Elsevier, vol. 38(1), pages 333-339, January.
    5. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    6. Pindyck, Robert S & Rotemberg, Julio J, 1990. "The Excess Co-movement of Commodity Prices," Economic Journal, Royal Economic Society, vol. 100(403), pages 1173-1189, December.
    7. Byrne, Joseph P. & Fazio, Giorgio & Fiess, Norbert, 2013. "Primary commodity prices: Co-movements, common factors and fundamentals," Journal of Development Economics, Elsevier, vol. 101(C), pages 16-26.
    8. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    9. Alonso, A.M. & Berrendero, J.R. & Hernandez, A. & Justel, A., 2006. "Time series clustering based on forecast densities," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 762-776, November.
    10. Natanelov, Valeri & Alam, Mohammad Jahangir & McKenzie, Andrew M. & Van Huylenbroeck, Guido, 2011. "Is There Co-Movement of Agricultural Commodities Futures Prices and Crude Oil?," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114626, European Association of Agricultural Economists.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Commodity prices; time series clustering; co-movement; dynamic time warping;

    JEL classification:

    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:56546. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.