IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Energy security under de-carbonization scenarios: An assessment framework and evaluation under different technology and policy choices

  • Jewell, Jessica
  • Cherp, Aleh
  • Riahi, Keywan
Registered author(s):

    How would a low-carbon energy transformation affect energy security? This paper proposes a framework to evaluate energy security under long-term energy scenarios generated by integrated assessment models. Energy security is defined as low vulnerability of vital energy systems, delineated along geographic and sectoral boundaries. The proposed framework considers vulnerability as a combination of risks associated with inter-regional energy trade and resilience reflected in energy intensity and diversity of energy sources and technologies. We apply this framework to 43 scenarios generated by the MESSAGE model as part of the Global Energy Assessment, including one baseline scenario and 42 ‘low-carbon’ scenarios where the global mean temperature increase is limited to 2°C over the pre-industrial level. By and large, low-carbon scenarios are associated with lower energy trade and higher diversity of energy options, especially in the transport sector. A few risks do emerge under low-carbon scenarios in the latter half of the century. They include potentially high trade in natural gas and hydrogen and low diversity of electricity sources. Trade is typically lower in scenarios which emphasize demand-side policies as well as non-tradable energy sources (nuclear and renewables) while diversity is higher in scenarios which limit the penetration of intermittent renewables.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Energy Policy.

    Volume (Year): 65 (2014)
    Issue (Month): C ()
    Pages: 743-760

    in new window

    Handle: RePEc:eee:enepol:v:65:y:2014:i:c:p:743-760
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Julie Rozenberg & Stéphane Hallegatte & Adrien Vogt-Schilb & Olivier Sassi & Céline Guivarch & Henri Waisman & Jean Charles Hourcade, 2010. "Climate policies as a hedge against the uncertainty on future oil supply," Post-Print hal-00667118, HAL.
    2. Löschel, Andreas & Moslener, Ulf & Rübbelke, Dirk T.G., 2010. "Indicators of energy security in industrialised countries," Energy Policy, Elsevier, vol. 38(4), pages 1665-1671, April.
    3. Costantini, Valeria & Gracceva, Francesco & Markandya, Anil & Vicini, Giorgio, 2007. "Security of energy supply: Comparing scenarios from a European perspective," Energy Policy, Elsevier, vol. 35(1), pages 210-226, January.
    4. Bollen, Johannes & Hers, Sebastiaan & van der Zwaan, Bob, 2010. "An integrated assessment of climate change, air pollution, and energy security policy," Energy Policy, Elsevier, vol. 38(8), pages 4021-4030, August.
    5. Helm, Dieter, 2002. "Energy policy: security of supply, sustainability and competition," Energy Policy, Elsevier, vol. 30(3), pages 173-184, February.
    6. Gupta, Eshita, 2008. "Oil vulnerability index of oil-importing countries," Energy Policy, Elsevier, vol. 36(3), pages 1195-1211, March.
    7. Sovacool, Benjamin K. & Mukherjee, Ishani, 2011. "Conceptualizing and measuring energy security: A synthesized approach," Energy, Elsevier, vol. 36(8), pages 5343-5355.
    8. David McCollum & Volker Krey & Keywan Riahi & Peter Kolp & Arnulf Grubler & Marek Makowski & Nebojsa Nakicenovic, 2013. "Climate policies can help resolve energy security and air pollution challenges," Climatic Change, Springer, vol. 119(2), pages 479-494, July.
    9. Winzer, Christian, 2012. "Conceptualizing energy security," Energy Policy, Elsevier, vol. 46(C), pages 36-48.
    10. Gnansounou, Edgard, 2008. "Assessing the energy vulnerability: Case of industrialised countries," Energy Policy, Elsevier, vol. 36(10), pages 3734-3744, October.
    11. Kruyt, Bert & van Vuuren, D.P. & de Vries, H.J.M. & Groenenberg, H., 2009. "Indicators for energy security," Energy Policy, Elsevier, vol. 37(6), pages 2166-2181, June.
    12. Bosetti, Valentina & Carraro, Carlo & Duval, Romain & Tavoni, Massimo, 2010. "What Should we Expect from Innovation? A Model-Based Assessment of the Environmental and Mitigation Cost Implications of Climate-Related R&D," CEPR Discussion Papers 7751, C.E.P.R. Discussion Papers.
    13. Stirling, Andy, 2010. "Multicriteria diversity analysis: A novel heuristic framework for appraising energy portfolios," Energy Policy, Elsevier, vol. 38(4), pages 1622-1634, April.
    14. Aleh Cherp & Jessica Jewell, 2013. "Energy security assessment framework and three case studies," Chapters, in: International Handbook of Energy Security, chapter 8, pages 146-173 Edward Elgar.
    15. Patrick Criqui & Silvana Mima, 2012. "European climate -- energy security nexus: A model based scenario analysis," Post-Print halshs-00661043, HAL.
    16. Le Coq, Chloe & Paltseva, Elena, 2009. "Measuring the Security of External Energy Supply in the European Union," SITE Working Paper Series 2, Stockholm Institute of Transition Economics, Stockholm School of Economics.
    17. Lefèvre, Nicolas, 2010. "Measuring the energy security implications of fossil fuel resource concentration," Energy Policy, Elsevier, vol. 38(4), pages 1635-1644, April.
    18. P. Shukla & Subash Dhar, 2011. "Climate agreements and India: aligning options and opportunities on a new track," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 11(3), pages 229-243, September.
    19. Grubb, Michael & Butler, Lucy & Twomey, Paul, 2006. "Diversity and security in UK electricity generation: The influence of low-carbon objectives," Energy Policy, Elsevier, vol. 34(18), pages 4050-4062, December.
    20. Shilpa Rao and Keywan Riahi, 2006. "The Role of Non-CO2 Greenhouse Gases in Climate Change Mitigation: Long-term Scenarios for the 21st Century," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 177-200.
    21. Detlef Vuuren & Elke Stehfest & Michel Elzen & Tom Kram & Jasper Vliet & Sebastiaan Deetman & Morna Isaac & Kees Klein Goldewijk & Andries Hof & Angelica Mendoza Beltran & Rineke Oostenrijk & Bas Ruij, 2011. "RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C," Climatic Change, Springer, vol. 109(1), pages 95-116, November.
    22. Turton, Hal & Barreto, Leonardo, 2006. "Long-term security of energy supply and climate change," Energy Policy, Elsevier, vol. 34(15), pages 2232-2250, October.
    23. Greene, David L., 2010. "Measuring energy security: Can the United States achieve oil independence?," Energy Policy, Elsevier, vol. 38(4), pages 1614-1621, April.
    24. Criqui, Patrick & Mima, Silvana, 2012. "European climate—energy security nexus: A model based scenario analysis," Energy Policy, Elsevier, vol. 41(C), pages 827-842.
    25. Stirling, Andrew, 1994. "Diversity and ignorance in electricity supply investment : Addressing the solution rather than the problem," Energy Policy, Elsevier, vol. 22(3), pages 195-216, March.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:65:y:2014:i:c:p:743-760. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.