IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v132y2014icp586-601.html
   My bibliography  Save this article

A scenario analysis of future energy systems based on an energy flow model represented as functionals of technology options

Author

Listed:
  • Kikuchi, Yasunori
  • Kimura, Seiichiro
  • Okamoto, Yoshitaka
  • Koyama, Michihisa

Abstract

The design of energy systems has become an issue all over the world. A single optimal system cannot be suggested because the availability of infrastructure and resources and the acceptability of the system should be discussed locally, involving all related stakeholders in the energy system. In particular, researchers and engineers of technologies related to energy systems should be able to perform the forecasting and roadmapping of future energy systems and indicate quantitative results of scenario analyses. We report an energy flow model developed for analysing scenarios of future Japanese energy systems implementing a variety of feasible technology options. The model was modularized and represented as functionals of appropriate technology options, which enables the aggregation and disaggregation of energy systems by defining functionals for single technologies, packages integrating multi-technologies, and mini-systems such as regions implementing industrial symbiosis. Based on the model, the combinations of technologies on both energy supply and demand sides can be addressed considering not only the societal scenarios such as resource prices, economic growth and population change but also the technical scenarios including the development and penetration of energy-related technologies such as distributed solid oxide fuel cells in residential sectors and new-generation vehicles, and the replacement and shift of current technologies such as heat pumps for air conditioning and centralized power generation. The developed model consists of two main modules; namely, a power generation dispatching module for the Japanese electricity grid and a demand-side energy flow module based on a sectorial energy balance table. Both modules are divided and implemented as submodules represented as functionals of supply- and demand-side technology options. Using the developed model, three case studies were performed. Required data were collected through workshops involving researchers and engineers in the energy technology field in Japan. The functionals of technologies were defined on the basis of the availability of data and understanding of the current and future energy systems. Through case studies, it was demonstrated that the potential of energy technologies can be analysed by the developed model considering the mutual relationships of technologies. The contribution of technologies to, e.g., the reduction in greenhouse gas emissions should be carefully examined by quantitative analyses of interdependencies of the technology options.

Suggested Citation

  • Kikuchi, Yasunori & Kimura, Seiichiro & Okamoto, Yoshitaka & Koyama, Michihisa, 2014. "A scenario analysis of future energy systems based on an energy flow model represented as functionals of technology options," Applied Energy, Elsevier, vol. 132(C), pages 586-601.
  • Handle: RePEc:eee:appene:v:132:y:2014:i:c:p:586-601
    DOI: 10.1016/j.apenergy.2014.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914006722
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kiriyama, Eriko & Kajikawa, Yuya, 2014. "A multilayered analysis of energy security research and the energy supply process," Applied Energy, Elsevier, vol. 123(C), pages 415-423.
    2. Bouffard, François & Kirschen, Daniel S., 2008. "Centralised and distributed electricity systems," Energy Policy, Elsevier, vol. 36(12), pages 4504-4508, December.
    3. Heyne, Stefan & Harvey, Simon, 2013. "Assessment of the energy and economic performance of second generation biofuel production processes using energy market scenarios," Applied Energy, Elsevier, vol. 101(C), pages 203-212.
    4. Ichinohe, Masayuki & Endo, Eiichi, 2006. "Analysis of the vehicle mix in the passenger-car sector in Japan for CO2 emissions reduction by a MARKAL model," Applied Energy, Elsevier, vol. 83(10), pages 1047-1061, October.
    5. Kannan, Ramachandran & Strachan, Neil, 2009. "Modelling the UK residential energy sector under long-term decarbonisation scenarios: Comparison between energy systems and sectoral modelling approaches," Applied Energy, Elsevier, vol. 86(4), pages 416-428, April.
    6. Lee, Duk Hee & Park, Sang Yong & Hong, Jong Chul & Choi, Sang Jin & Kim, Jong Wook, 2013. "Analysis of the energy and environmental effects of green car deployment by an integrating energy system model with a forecasting model," Applied Energy, Elsevier, vol. 103(C), pages 306-316.
    7. McDowall, William & Eames, Malcolm, 2006. "Forecasts, scenarios, visions, backcasts and roadmaps to the hydrogen economy: A review of the hydrogen futures literature," Energy Policy, Elsevier, vol. 34(11), pages 1236-1250, July.
    8. Koo, Jamin & Park, Kyungtae & Shin, Dongil & Yoon, En Sup, 2011. "Economic evaluation of renewable energy systems under varying scenarios and its implications to Korea's renewable energy plan," Applied Energy, Elsevier, vol. 88(6), pages 2254-2260, June.
    9. Kannan, Ramachandran, 2011. "The development and application of a temporal MARKAL energy system model using flexible time slicing," Applied Energy, Elsevier, vol. 88(6), pages 2261-2272, June.
    10. Yamagata, Yoshiki & Seya, Hajime, 2013. "Simulating a future smart city: An integrated land use-energy model," Applied Energy, Elsevier, vol. 112(C), pages 1466-1474.
    11. Gracceva, Francesco & Zeniewski, Peter, 2014. "A systemic approach to assessing energy security in a low-carbon EU energy system," Applied Energy, Elsevier, vol. 123(C), pages 335-348.
    12. Gebremedhin, Alemayehu, 2012. "Introducing District Heating in a Norwegian town – Potential for reduced Local and Global Emissions," Applied Energy, Elsevier, vol. 95(C), pages 300-304.
    13. Tonini, Davide & Astrup, Thomas, 2012. "LCA of biomass-based energy systems: A case study for Denmark," Applied Energy, Elsevier, vol. 99(C), pages 234-246.
    14. Takeshita, Takayuki, 2009. "A strategy for introducing modern bioenergy into developing Asia to avoid dangerous climate change," Applied Energy, Elsevier, vol. 86(Supplemen), pages 222-232, November.
    15. Wetterlund, Elisabeth & Söderström, Mats, 2010. "Biomass gasification in district heating systems - The effect of economic energy policies," Applied Energy, Elsevier, vol. 87(9), pages 2914-2922, September.
    16. Nishimura, Kazuhiko & Hondo, Hiroki & Uchiyama, Yohji, 2001. "Comparative analysis of embodied liabilities using an inter-industrial process model: gasoline- vs. electro-powered vehicles," Applied Energy, Elsevier, vol. 69(4), pages 307-320, August.
    17. Benjamin McLellan & Qi Zhang & Hooman Farzaneh & N. Agya Utama & Keiichi N. Ishihara, 2012. "Resilience, Sustainability and Risk Management: A Focus on Energy," Challenges, MDPI, vol. 3(2), pages 1-30, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, M.N. & Wong, Jane W.K. & Cheung, C.F. & Leung, K.H., 2016. "A scenario-based roadmapping method for strategic planning and forecasting: A case study in a testing, inspection and certification company," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 44-62.
    2. Su, Huai & Zhang, Jinjun & Zio, Enrico & Yang, Nan & Li, Xueyi & Zhang, Zongjie, 2018. "An integrated systemic method for supply reliability assessment of natural gas pipeline networks," Applied Energy, Elsevier, vol. 209(C), pages 489-501.
    3. Shimizu, Teruyuki & Kikuchi, Yasunori & Sugiyama, Hirokazu & Hirao, Masahiko, 2015. "Design method for a local energy cooperative network using distributed energy technologies," Applied Energy, Elsevier, vol. 154(C), pages 781-793.
    4. Tokimatsu, Koji & Yasuoka, Rieko & Nishio, Masahiro, 2017. "Global zero emissions scenarios: The role of biomass energy with carbon capture and storage by forested land use," Applied Energy, Elsevier, vol. 185(P2), pages 1899-1906.
    5. Huang, Zishuo & Yu, Hang & Chu, Xiangyang & Peng, Zhenwei, 2017. "A goal programming based model system for community energy plan," Energy, Elsevier, vol. 134(C), pages 893-901.
    6. Min, Jihoon & Azevedo, Inês Lima & Hakkarainen, Pekka, 2015. "Assessing regional differences in lighting heat replacement effects in residential buildings across the United States," Applied Energy, Elsevier, vol. 141(C), pages 12-18.
    7. Tokimatsu, Koji & Konishi, Satoshi & Ishihara, Keiichi & Tezuka, Tetsuo & Yasuoka, Rieko & Nishio, Masahiro, 2016. "Role of innovative technologies under the global zero emissions scenarios," Applied Energy, Elsevier, vol. 162(C), pages 1483-1493.
    8. Yamaki, Ayumi & Kanematsu, Yuichiro & Kikuchi, Yasunori, 2020. "Lifecycle greenhouse gas emissions of thermal energy storage implemented in a paper mill for wind energy utilization," Energy, Elsevier, vol. 205(C).
    9. Liu, Xuezhi & Mancarella, Pierluigi, 2016. "Modelling, assessment and Sankey diagrams of integrated electricity-heat-gas networks in multi-vector district energy systems," Applied Energy, Elsevier, vol. 167(C), pages 336-352.
    10. Laha, Priyanka & Chakraborty, Basab, 2017. "Energy model – A tool for preventing energy dysfunction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 95-114.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shimizu, Teruyuki & Kikuchi, Yasunori & Sugiyama, Hirokazu & Hirao, Masahiko, 2015. "Design method for a local energy cooperative network using distributed energy technologies," Applied Energy, Elsevier, vol. 154(C), pages 781-793.
    2. Howard, B. & Waite, M. & Modi, V., 2017. "Current and near-term GHG emissions factors from electricity production for New York State and New York City," Applied Energy, Elsevier, vol. 187(C), pages 255-271.
    3. Ziyi Wang & Zengqiao Chen & Cuiping Ma & Ronald Wennersten & Qie Sun, 2022. "Nationwide Evaluation of Urban Energy System Resilience in China Using a Comprehensive Index Method," Sustainability, MDPI, vol. 14(4), pages 1-36, February.
    4. Duenas, Pablo & Ramos, Andres & Tapia-Ahumada, Karen & Olmos, Luis & Rivier, Michel & Pérez-Arriaga, Jose-Ignacio, 2018. "Security of supply in a carbon-free electric power system: The case of Iceland," Applied Energy, Elsevier, vol. 212(C), pages 443-454.
    5. Mondal, Md. Alam Hossain & Kennedy, Scott & Mezher, Toufic, 2014. "Long-term optimization of United Arab Emirates energy future: Policy implications," Applied Energy, Elsevier, vol. 114(C), pages 466-474.
    6. Sharifi, Ayyoob & Yamagata, Yoshiki, 2016. "Principles and criteria for assessing urban energy resilience: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1654-1677.
    7. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    9. Zhu, Bo & Deng, Yuanyue & Lin, Renda & Hu, Xin & Chen, Pingshe, 2022. "Energy security: Does systemic risk spillover matter? Evidence from China," Energy Economics, Elsevier, vol. 114(C).
    10. Anandarajah, Gabrial & Strachan, Neil, 2010. "Interactions and implications of renewable and climate change policy on UK energy scenarios," Energy Policy, Elsevier, vol. 38(11), pages 6724-6735, November.
    11. Welsch, M. & Hermann, S. & Howells, M. & Rogner, H.H. & Young, C. & Ramma, I. & Bazilian, M. & Fischer, G. & Alfstad, T. & Gielen, D. & Le Blanc, D. & Röhrl, A. & Steduto, P. & Müller, A., 2014. "Adding value with CLEWS – Modelling the energy system and its interdependencies for Mauritius," Applied Energy, Elsevier, vol. 113(C), pages 1434-1445.
    12. Sennai Mesfun & Jan-Olof Anderson & Kentaro Umeki & Andrea Toffolo, 2016. "Integrated SNG Production in a Typical Nordic Sawmill," Energies, MDPI, vol. 9(5), pages 1-19, April.
    13. Chung, Whan-Sam & Tohno, Susumu & Shim, Sang Yul, 2009. "An estimation of energy and GHG emission intensity caused by energy consumption in Korea: An energy IO approach," Applied Energy, Elsevier, vol. 86(10), pages 1902-1914, October.
    14. Fehrenbach, Daniel & Merkel, Erik & McKenna, Russell & Karl, Ute & Fichtner, Wolf, 2014. "On the economic potential for electric load management in the German residential heating sector – An optimising energy system model approach," Energy, Elsevier, vol. 71(C), pages 263-276.
    15. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2013. "Heat recovery with heat pumps in non-energy intensive industry: A detailed bottom-up model analysis in the French food & drink industry," Applied Energy, Elsevier, vol. 111(C), pages 489-504.
    16. Zhao, Chunfu & Chen, Bin, 2014. "China’s oil security from the supply chain perspective: A review," Applied Energy, Elsevier, vol. 136(C), pages 269-279.
    17. Mustapa, Siti Indati & Bekhet, Hussain Ali, 2016. "Analysis of CO2 emissions reduction in the Malaysian transportation sector: An optimisation approach," Energy Policy, Elsevier, vol. 89(C), pages 171-183.
    18. Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    19. Olympios, Andreas V. & Pantaleo, Antonio M. & Sapin, Paul & Markides, Christos N., 2020. "On the value of combined heat and power (CHP) systems and heat pumps incentralised and distributed heating systems: Lessons from multi-fidelitymodelling approaches," Applied Energy, Elsevier, vol. 274(C).
    20. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2016. "Comparison of integration options for gasification-based biofuel production systems – Economic and greenhouse gas emission implications," Energy, Elsevier, vol. 111(C), pages 272-294.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:132:y:2014:i:c:p:586-601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.