IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v131y2014icp79-86.html
   My bibliography  Save this article

India’s CO2 emission pathways to 2050: What role can renewables play?

Author

Listed:
  • Anandarajah, Gabrial
  • Gambhir, Ajay

Abstract

Renewable energy can play an important role in India’s climate change mitigation, as India has great potential for renewables, especially solar and wind. This paper analyses the role of renewables to meet India’s possible 2050 climate change mitigation targets using a multi-region global energy system model called TIAM-UCL, where India is explicitly represented as a separate region. TIAM-UCL is a cost optimisation model. The climate policy is applied to all regions in the model based on equal per capita emissions of 1.3tCO2 by 2050. Analysis shows that renewable energy can play an important role to decarbonise the economy, especially the power sector. Two low-carbon scenarios are explored, the first allowing for carbon capture and storage (CCS) technology deployment and the second excluding this technology. In the first low-carbon scenario (LC1), the most critical renewable energy technologies in the power sector are biomass with CCS, solar and wind. In the second low-carbon scenario (LC2), without CCS, there is an even greater role for solar and wind. Over the whole Indian economy, by 2050 renewables contribute 57% of the total CO2 reductions in LC1 (relative to a reference scenario with no CO2 target) and 63% of the CO2 reductions in LC2.

Suggested Citation

  • Anandarajah, Gabrial & Gambhir, Ajay, 2014. "India’s CO2 emission pathways to 2050: What role can renewables play?," Applied Energy, Elsevier, vol. 131(C), pages 79-86.
  • Handle: RePEc:eee:appene:v:131:y:2014:i:c:p:79-86
    DOI: 10.1016/j.apenergy.2014.06.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914006084
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suganthi, L. & Williams, A., 2000. "Renewable energy in India -- a modelling study for 2020-2021," Energy Policy, Elsevier, vol. 28(15), pages 1095-1109, December.
    2. Kanudia, Amit & Shukla, PR, 1998. "Modelling of Uncertainties and Price Elastic Demands in Energy-environment Planning for India," Omega, Elsevier, vol. 26(3), pages 409-423, June.
    3. Vaillancourt, Kathleen & Labriet, Maryse & Loulou, Richard & Waaub, Jean-Philippe, 2008. "The role of nuclear energy in long-term climate scenarios: An analysis with the World-TIMES model," Energy Policy, Elsevier, vol. 36(7), pages 2296-2307, July.
    4. Chen, Wenying & Wu, Zongxin & He, Jiankun & Gao, Pengfei & Xu, Shaofeng, 2007. "Carbon emission control strategies for China: A comparative study with partial and general equilibrium versions of the China MARKAL model," Energy, Elsevier, vol. 32(1), pages 59-72.
    5. Varun & Singal, S.K., 2007. "Review of augmentation of energy needs using renewable energy sources in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1607-1615, September.
    6. Zografia Anastasiadou & BrendaLópez-Cabrera, 2012. "Statistical Modelling of Temperature Risk," SFB 649 Discussion Papers SFB649DP2012-029, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    7. Føyn, T. Helene Ystanes & Karlsson, Kenneth & Balyk, Olexandr & Grohnheit, Poul Erik, 2011. "A global renewable energy system: A modelling exercise in ETSAP/TIAM," Applied Energy, Elsevier, vol. 88(2), pages 526-534, February.
    8. Anandarajah, Gabrial & Strachan, Neil, 2010. "Interactions and implications of renewable and climate change policy on UK energy scenarios," Energy Policy, Elsevier, vol. 38(11), pages 6724-6735, November.
    9. Viebahn, Peter & Vallentin, Daniel & Höller, Samuel, 2014. "Prospects of carbon capture and storage (CCS) in India’s power sector – An integrated assessment," Applied Energy, Elsevier, vol. 117(C), pages 62-75.
    10. Rafaj, Peter & Kypreos, Socrates, 2007. "Internalisation of external cost in the power generation sector: Analysis with Global Multi-regional MARKAL model," Energy Policy, Elsevier, vol. 35(2), pages 828-843, February.
    11. Ichinohe, Masayuki & Endo, Eiichi, 2006. "Analysis of the vehicle mix in the passenger-car sector in Japan for CO2 emissions reduction by a MARKAL model," Applied Energy, Elsevier, vol. 83(10), pages 1047-1061, October.
    12. Bhattacharya, S.C. & Jana, Chinmoy, 2009. "Renewable energy in India: Historical developments and prospects," Energy, Elsevier, vol. 34(8), pages 981-991.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:appene:v:235:y:2019:i:c:p:186-203 is not listed on IDEAS
    2. Mittal, Shivika & Dai, Hancheng & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Bridging greenhouse gas emissions and renewable energy deployment target: Comparative assessment of China and India," Applied Energy, Elsevier, vol. 166(C), pages 301-313.
    3. Carlos Benavides & Luis Gonzales & Manuel Diaz & Rodrigo Fuentes & Gonzalo García & Rodrigo Palma-Behnke & Catalina Ravizza, 2015. "The Impact of a Carbon Tax on the Chilean Electricity Generation Sector," Energies, MDPI, Open Access Journal, vol. 8(4), pages 1-27, April.
    4. Patteeuw, Dieter & Reynders, Glenn & Bruninx, Kenneth & Protopapadaki, Christina & Delarue, Erik & D’haeseleer, William & Saelens, Dirk & Helsen, Lieve, 2015. "CO2-abatement cost of residential heat pumps with active demand response: demand- and supply-side effects," Applied Energy, Elsevier, vol. 156(C), pages 490-501.
    5. Ajay Gambhir & Laurent Drouet & David McCollum & Tamaryn Napp & Dan Bernie & Adam Hawkes & Oliver Fricko & Petr Havlik & Keywan Riahi & Valentina Bosetti & Jason Lowe, 2017. "Assessing the Feasibility of Global Long-Term Mitigation Scenarios," Energies, MDPI, Open Access Journal, vol. 10(1), pages 1-31, January.
    6. repec:eee:appene:v:215:y:2018:i:c:p:792-807 is not listed on IDEAS
    7. Baležentis, Tomas & Streimikiene, Dalia, 2017. "Multi-criteria ranking of energy generation scenarios with Monte Carlo simulation," Applied Energy, Elsevier, vol. 185(P1), pages 862-871.
    8. repec:gam:jeners:v:12:y:2019:i:7:p:1361-:d:221167 is not listed on IDEAS
    9. Tokimatsu, Koji & Konishi, Satoshi & Ishihara, Keiichi & Tezuka, Tetsuo & Yasuoka, Rieko & Nishio, Masahiro, 2016. "Role of innovative technologies under the global zero emissions scenarios," Applied Energy, Elsevier, vol. 162(C), pages 1483-1493.
    10. repec:eee:appene:v:225:y:2018:i:c:p:42-51 is not listed on IDEAS
    11. repec:eee:rensus:v:81:y:2018:i:p2:p:2019-2027 is not listed on IDEAS
    12. Wang, Mingshen & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Yu, Xiaodan & Qi, Yan, 2017. "Active power regulation for large-scale wind farms through an efficient power plant model of electric vehicles," Applied Energy, Elsevier, vol. 185(P2), pages 1673-1683.
    13. repec:eee:appene:v:212:y:2018:i:c:p:704-719 is not listed on IDEAS
    14. Tokimatsu, Koji & Yasuoka, Rieko & Nishio, Masahiro, 2017. "Global zero emissions scenarios: The role of biomass energy with carbon capture and storage by forested land use," Applied Energy, Elsevier, vol. 185(P2), pages 1899-1906.
    15. repec:eee:appene:v:231:y:2018:i:c:p:914-925 is not listed on IDEAS
    16. Jeslin Drusila Nesamalar, J. & Venkatesh, P. & Charles Raja, S., 2017. "The drive of renewable energy in Tamilnadu: Status, barriers and future prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 115-124.
    17. Sumabat, Ana Karmela & Lopez, Neil Stephen & Yu, Krista Danielle & Hao, Han & Li, Richard & Geng, Yong & Chiu, Anthony S.F., 2016. "Decomposition analysis of Philippine CO2 emissions from fuel combustion and electricity generation," Applied Energy, Elsevier, vol. 164(C), pages 795-804.
    18. Al-Kalbani, Haitham & Xuan, Jin & García, Susana & Wang, Huizhi, 2016. "Comparative energetic assessment of methanol production from CO2: Chemical versus electrochemical process," Applied Energy, Elsevier, vol. 165(C), pages 1-13.

    More about this item

    Keywords

    India’s CO2 emissions; TIAM-UCL; Renewable energy;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:131:y:2014:i:c:p:79-86. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.