IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v24y2019i7d10.1007_s11027-018-9835-7.html
   My bibliography  Save this article

Affordable CO2 negative emission through hydrogen from biomass, ocean liming, and CO2 storage

Author

Listed:
  • Stefano Caserini

    (Dipartimento di Ingegneria Civile ed Ambientale)

  • Beatriz Barreto

    (Dipartimento di Ingegneria Civile ed Ambientale)

  • Caterina Lanfredi

    (Dipartimento di Ingegneria Civile ed Ambientale)

  • Giovanni Cappello

    (CO2Apps)

  • Dennis Ross Morrey

    (CO2Apps)

  • Mario Grosso

    (Dipartimento di Ingegneria Civile ed Ambientale)

Abstract

A new process to remove carbon dioxide (CO2) from the atmosphere, by combining commercial industrial technologies with ocean liming and CO2 storage, is presented. The process aims to overcome the limiting factors of other negative emission technologies (cost and energy requirements, potential competition for land and freshwater) while simultaneously addressing the problem of ocean acidification. The overall proposed process is based on the following: (a) a gasifier where the biomass is converted to syngas; (b) a thermal steam reformer working at high temperature where the hydrocarbons and tar oils are converted to hydrogen (H2) and carbon monoxide (CO); (c) a kiln to produce Ca(OH)2 (slaked lime) from limestone by using the enthalpy of the hot syngas; (d) the spreading, by means of vessels, of the slaked lime into the seawater to achieve ocean liming; (e) the delivery of syngas to a water gas shift reactor producing CO2 and H2 that are then separated; (f) the final storage of all CO2 produced in the process; (g) the use of H2, being the valuable by-product of the whole process, for decarbonized energy production as well as for ammonia synthesis, offsetting part of the production cost, thus generating “low-cost” negative emissions. The mass and energy balances show that the total atmospheric CO2 removed by the process is 2.6 ton per ton of biomass used. By adding an estimated 0.43 ton avoided—thanks to the use of produced H2—the overall CO2 benefit of the process increases to 3.0 ton per ton of biomass. A preliminary cost analysis resulted in an average levelized cost of 98 $ per ton of CO2 removed; when considering the revenues from the produced energy, the cost falls to 64 $/tCO2. The higher efficiency in carbon removal obtained allows to reduce the amount of biomass required by BECCS (bioenergy with carbon capture and storage) to achieve negative emissions, and thanks to the valuable H2 produced it lowers the costs of CO2 removal from the atmosphere.

Suggested Citation

  • Stefano Caserini & Beatriz Barreto & Caterina Lanfredi & Giovanni Cappello & Dennis Ross Morrey & Mario Grosso, 2019. "Affordable CO2 negative emission through hydrogen from biomass, ocean liming, and CO2 storage," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(7), pages 1231-1248, October.
  • Handle: RePEc:spr:masfgc:v:24:y:2019:i:7:d:10.1007_s11027-018-9835-7
    DOI: 10.1007/s11027-018-9835-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-018-9835-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-018-9835-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Claudine Hauri & Tobias Friedrich & Axel Timmermann, 2016. "Abrupt onset and prolongation of aragonite undersaturation events in the Southern Ocean," Nature Climate Change, Nature, vol. 6(2), pages 172-176, February.
    2. David P. Keller & Ellias Y. Feng & Andreas Oschlies, 2014. "Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario," Nature Communications, Nature, vol. 5(1), pages 1-11, May.
    3. Tokimatsu, Koji & Yasuoka, Rieko & Nishio, Masahiro, 2017. "Global zero emissions scenarios: The role of biomass energy with carbon capture and storage by forested land use," Applied Energy, Elsevier, vol. 185(P2), pages 1899-1906.
    4. Renforth, P. & Jenkins, B.G. & Kruger, T., 2013. "Engineering challenges of ocean liming," Energy, Elsevier, vol. 60(C), pages 442-452.
    5. Hanak, Dawid P. & Jenkins, Barrie G. & Kruger, Tim & Manovic, Vasilije, 2017. "High-efficiency negative-carbon emission power generation from integrated solid-oxide fuel cell and calciner," Applied Energy, Elsevier, vol. 205(C), pages 1189-1201.
    6. Kheshgi, Haroon S., 1995. "Sequestering atmospheric carbon dioxide by increasing ocean alkalinity," Energy, Elsevier, vol. 20(9), pages 915-922.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Galán-Martín, Ángel & Contreras, María del Mar & Romero, Inmaculada & Ruiz, Encarnación & Bueno-Rodríguez, Salvador & Eliche-Quesada, Dolores & Castro-Galiano, Eulogio, 2022. "The potential role of olive groves to deliver carbon dioxide removal in a carbon-neutral Europe: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanak, Dawid P. & Jenkins, Barrie G. & Kruger, Tim & Manovic, Vasilije, 2017. "High-efficiency negative-carbon emission power generation from integrated solid-oxide fuel cell and calciner," Applied Energy, Elsevier, vol. 205(C), pages 1189-1201.
    2. Sarah Gore & Phil Renforth & Rupert Perkins, 2019. "The potential environmental response to increasing ocean alkalinity for negative emissions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(7), pages 1191-1211, October.
    3. Wei-Lei Wang & Mar Fernández-Méndez & Franziska Elmer & Guang Gao & Yangyang Zhao & Yuye Han & Jiandong Li & Fei Chai & Minhan Dai, 2023. "Ocean afforestation is a potentially effective way to remove carbon dioxide," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
    4. Koji Tokimatsu & Louis Dupuy & Nick Hanley, 2019. "Using Genuine Savings for Climate Policy Evaluation with an Integrated Assessment Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 281-307, January.
    5. Wang Lu & Pietro Bartocci & Alberto Abad & Aldo Bischi & Haiping Yang & Arturo Cabello & Margarita de Las Obras Loscertales & Mauro Zampilli & Francesco Fantozzi, 2023. "Dimensioning Air Reactor and Fuel Reactor of a Pressurized CLC Plant to Be Coupled to a Gas Turbine: Part 2, the Fuel Reactor," Energies, MDPI, vol. 16(9), pages 1-16, April.
    6. Dejian Yu & Sun Meng, 2018. "An overview of biomass energy research with bibliometric indicators," Energy & Environment, , vol. 29(4), pages 576-590, June.
    7. Nadine Mengis & David P. Keller & Wilfried Rickels & Martin Quaas & Andreas Oschlies, 2019. "Climate engineering–induced changes in correlations between Earth system variables—implications for appropriate indicator selection," Climatic Change, Springer, vol. 153(3), pages 305-322, April.
    8. Reyhaneh Banihabib & Mohsen Assadi, 2022. "The Role of Micro Gas Turbines in Energy Transition," Energies, MDPI, vol. 15(21), pages 1-22, October.
    9. Tokimatsu, Koji & Höök, Mikael & McLellan, Benjamin & Wachtmeister, Henrik & Murakami, Shinsuke & Yasuoka, Rieko & Nishio, Masahiro, 2018. "Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy," Applied Energy, Elsevier, vol. 225(C), pages 1158-1175.
    10. Lomax, Guy & Workman, Mark & Lenton, Timothy & Shah, Nilay, 2015. "Reframing the policy approach to greenhouse gas removal technologies," Energy Policy, Elsevier, vol. 78(C), pages 125-136.
    11. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    12. Feng, Jing-Chun & Sun, Liwei & Yan, Jinyue, 2023. "Carbon sequestration via shellfish farming: A potential negative emissions technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    13. Yi Cheng & Chuzhi Zhao & Pradeep Neupane & Bradley Benjamin & Jiawei Wang & Tongsheng Zhang, 2023. "Applicability and Trend of the Artificial Intelligence (AI) on Bioenergy Research between 1991–2021: A Bibliometric Analysis," Energies, MDPI, vol. 16(3), pages 1-15, January.
    14. Guo, Fuxing & Wang, Yanping & Zhu, Haoyong & Zhang, Chuangye & Sun, Haowei & Fang, Zhuling & Yang, Jing & Zhang, Linsen & Mu, Yan & Man, Yu Bon & Wu, Fuyong, 2023. "Crop productivity and soil inorganic carbon change mediated by enhanced rock weathering in farmland: A comparative field analysis of multi-agroclimatic regions in central China," Agricultural Systems, Elsevier, vol. 210(C).
    15. Yiwen Pan & Long You & Yifan Li & Wei Fan & Chen-Tung Arthur Chen & Bing-Jye Wang & Ying Chen, 2018. "Achieving Highly Efficient Atmospheric CO 2 Uptake by Artificial Upwelling," Sustainability, MDPI, vol. 10(3), pages 1-19, March.
    16. Rickels, Wilfried & Merk, Christine & Honneth, Johannes & Schwinger, Jörg & Quaas, Martin & Oschlies, Andreas, 2019. "Welche Rolle spielen negative Emissionen für die zukünftige Klimapolitik?," Open Access Publications from Kiel Institute for the World Economy 261840, Kiel Institute for the World Economy (IfW Kiel).
    17. Jim Ormond, 2020. "Geoengineering super low carbon cows: food and the corporate carbon economy in a low carbon world," Climatic Change, Springer, vol. 163(1), pages 135-153, November.
    18. Weng, Yuwei & Cai, Wenjia & Wang, Can, 2021. "Evaluating the use of BECCS and afforestation under China’s carbon-neutral target for 2060," Applied Energy, Elsevier, vol. 299(C).
    19. Jiang, Xuemei & Guan, Dabo, 2016. "Determinants of global CO2 emissions growth," Applied Energy, Elsevier, vol. 184(C), pages 1132-1141.
    20. Vadim Fetisov & Adam M. Gonopolsky & Maria Yu. Zemenkova & Schipachev Andrey & Hadi Davardoost & Amir H. Mohammadi & Masoud Riazi, 2023. "On the Integration of CO 2 Capture Technologies for an Oil Refinery," Energies, MDPI, vol. 16(2), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:24:y:2019:i:7:d:10.1007_s11027-018-9835-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.