IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v171y2023ics1364032122008991.html
   My bibliography  Save this article

Carbon sequestration via shellfish farming: A potential negative emissions technology

Author

Listed:
  • Feng, Jing-Chun
  • Sun, Liwei
  • Yan, Jinyue

Abstract

Negative emission technologies driven by nature with less energy input, lower costs, and long carbon storage capacities are essential for meeting ambitious global carbon mitigation goals. This paper evaluates the carbon sequestration potential of bivalve shellfish farming because its sequestration process is driven by nature, and it is cost-effective and energy efficient. The carbon in shells and the carbon that enters sediments via bio-deposition are long-lived forms of carbon. Using China as a case study, a preliminary estimation suggests that the carbon sequestration efficiency and intensity of cultivated shellfishes are much higher than those of artificial forests. In China, approximately 6.23 Mt CO2-eq a−1 was fixed via net carbon sequestration during shellfish growth from 2015 to 2019. In addition, the farmed shellfishes provided 0.37 Mt of harvested protein, and approximately 37.39 Mt CO2-eq a-1 were reduced compared to the same amount of protein provided by beef, and thus, shellfish farming has the win-win benefits of carbon sequestration and high-quality food provision. More importantly, a total of 5.64 Gt CO2-eq, accounting for 17.63% of the total emissions in 2020, can be potentially sequestrated at the global scale under the world's largest farming area scenario.

Suggested Citation

  • Feng, Jing-Chun & Sun, Liwei & Yan, Jinyue, 2023. "Carbon sequestration via shellfish farming: A potential negative emissions technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
  • Handle: RePEc:eee:rensus:v:171:y:2023:i:c:s1364032122008991
    DOI: 10.1016/j.rser.2022.113018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122008991
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.113018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Galen A. McKinley & Darren J. Pilcher & Amanda R. Fay & Keith Lindsay & Matthew C. Long & Nicole S. Lovenduski, 2016. "Timescales for detection of trends in the ocean carbon sink," Nature, Nature, vol. 530(7591), pages 469-472, February.
    2. Rosamond L. Naylor & Avinash Kishore & U. Rashid Sumaila & Ibrahim Issifu & Blaire P. Hunter & Ben Belton & Simon R. Bush & Ling Cao & Stefan Gelcich & Jessica A. Gephart & Christopher D. Golden & Mal, 2021. "Blue food demand across geographic and temporal scales," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    3. Duncan McLaren, 2020. "Quantifying the potential scale of mitigation deterrence from greenhouse gas removal techniques," Climatic Change, Springer, vol. 162(4), pages 2411-2428, October.
    4. Phil Williamson, 2016. "Emissions reduction: Scrutinize CO2 removal methods," Nature, Nature, vol. 530(7589), pages 153-155, February.
    5. Rehdanz, Katrin & Tol, Richard S.J. & Wetzel, Patrick, 2006. "Ocean carbon sinks and international climate policy," Energy Policy, Elsevier, vol. 34(18), pages 3516-3526, December.
    6. David P. Keller & Ellias Y. Feng & Andreas Oschlies, 2014. "Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario," Nature Communications, Nature, vol. 5(1), pages 1-11, May.
    7. Luiz E. O. C. Aragão & Liana O. Anderson & Marisa G. Fonseca & Thais M. Rosan & Laura B. Vedovato & Fabien H. Wagner & Camila V. J. Silva & Celso H. L. Silva Junior & Egidio Arai & Ana P. Aguiar & Jos, 2018. "21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    8. Jessica A. Gephart & Patrik J. G. Henriksson & Robert W. R. Parker & Alon Shepon & Kelvin D. Gorospe & Kristina Bergman & Gidon Eshel & Christopher D. Golden & Benjamin S. Halpern & Sara Hornborg & Ma, 2021. "Environmental performance of blue foods," Nature, Nature, vol. 597(7876), pages 360-365, September.
    9. Veronika Dornburg & Gregg Marland, 2008. "Temporary storage of carbon in the biosphere does have value for climate change mitigation: a response to the paper by Miko Kirschbaum," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(3), pages 211-217, March.
    10. James E. Bauer & Wei-Jun Cai & Peter A. Raymond & Thomas S. Bianchi & Charles S. Hopkinson & Pierre A. G. Regnier, 2013. "The changing carbon cycle of the coastal ocean," Nature, Nature, vol. 504(7478), pages 61-70, December.
    11. Keith Paustian & Johannes Lehmann & Stephen Ogle & David Reay & G. Philip Robertson & Pete Smith, 2016. "Climate-smart soils," Nature, Nature, vol. 532(7597), pages 49-57, April.
    12. Miko Kirschbaum, 2006. "Temporary Carbon Sequestration Cannot Prevent Climate Change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(5), pages 1151-1164, September.
    13. Cornelia Rumpel & Farshad Amiraslani & Lydie-Stella Koutika & Pete Smith & David Whitehead & Eva Wollenberg, 2018. "Put more carbon in soils to meet Paris climate pledges," Nature, Nature, vol. 564(7734), pages 32-34, December.
    14. Rosamond L. Naylor & Avinash Kishore & U. Rashid Sumaila & Ibrahim Issifu & Blaire P. Hunter & Ben Belton & Simon R. Bush & Ling Cao & Stefan Gelcich & Jessica A. Gephart & Christopher D. Golden & Mal, 2021. "Author Correction: Blue food demand across geographic and temporal scales," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    15. Pete Smith & Steven J. Davis & Felix Creutzig & Sabine Fuss & Jan Minx & Benoit Gabrielle & Etsushi Kato & Robert B. Jackson & Annette Cowie & Elmar Kriegler & Detlef P. van Vuuren & Joeri Rogelj & Ph, 2016. "Biophysical and economic limits to negative CO2 emissions," Nature Climate Change, Nature, vol. 6(1), pages 42-50, January.
    16. Luciana V. Gatti & Luana S. Basso & John B. Miller & Manuel Gloor & Lucas Gatti Domingues & Henrique L. G. Cassol & Graciela Tejada & Luiz E. O. C. Aragão & Carlos Nobre & Wouter Peters & Luciano Mara, 2021. "Amazonia as a carbon source linked to deforestation and climate change," Nature, Nature, vol. 595(7867), pages 388-393, July.
    17. Marco Springmann & Michael Clark & Daniel Mason-D’Croz & Keith Wiebe & Benjamin Leon Bodirsky & Luis Lassaletta & Wim Vries & Sonja J. Vermeulen & Mario Herrero & Kimberly M. Carlson & Malin Jonell & , 2018. "Options for keeping the food system within environmental limits," Nature, Nature, vol. 562(7728), pages 519-525, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naylor, Rosamond & Fang, Safari & Fanzo, Jessica, 2023. "A global view of aquaculture policy," Food Policy, Elsevier, vol. 116(C).
    2. Ling Cao & Benjamin S. Halpern & Max Troell & Rebecca Short & Cong Zeng & Ziyu Jiang & Yue Liu & Chengxuan Zou & Chunyu Liu & Shurong Liu & Xiangwei Liu & William W. L. Cheung & Richard S. Cottrell & , 2023. "Vulnerability of blue foods to human-induced environmental change," Nature Sustainability, Nature, vol. 6(10), pages 1186-1198, October.
    3. Kangshun Zhao & Steven D. Gaines & Jorge García Molinos & Min Zhang & Jun Xu, 2024. "Effect of trade on global aquatic food consumption patterns," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Wim Carton & Adeniyi Asiyanbi & Silke Beck & Holly J. Buck & Jens F. Lund, 2020. "Negative emissions and the long history of carbon removal," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(6), November.
    5. Shan Huang & Stewart M. Edie & Katie S. Collins & Nicholas M. A. Crouch & Kaustuv Roy & David Jablonski, 2023. "Diversity, distribution and intrinsic extinction vulnerability of exploited marine bivalves," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Parisa, Zack & Marland, Eric & Sohngen, Brent & Marland, Gregg & Jenkins, Jennifer, 2022. "The time value of carbon storage," Forest Policy and Economics, Elsevier, vol. 144(C).
    7. Matamala, Yolanda & Flores, Francisco & Arriet, Andrea & Khan, Zarrar & Feijoo, Felipe, 2023. "Probabilistic feasibility assessment of sequestration reliance for climate targets," Energy, Elsevier, vol. 272(C).
    8. Günther, Philipp & Ekardt, Felix, 2022. "Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(12), pages 1-29.
    9. Marshall, Liz & Kelly, Alexia, 2010. "The Time Value of Carbon and Carbon Storage: Clarifying the terms and the policy implications of the debate," MPRA Paper 27326, University Library of Munich, Germany.
    10. Rickels, Wilfried & Rehdanz, Katrin & Oschlies, Andreas, 2010. "Methods for greenhouse gas offset accounting: A case study of ocean iron fertilization," Ecological Economics, Elsevier, vol. 69(12), pages 2495-2509, October.
    11. Rickels, Wilfried & Merk, Christine & Honneth, Johannes & Schwinger, Jörg & Quaas, Martin & Oschlies, Andreas, 2019. "Welche Rolle spielen negative Emissionen für die zukünftige Klimapolitik?," Open Access Publications from Kiel Institute for the World Economy 261840, Kiel Institute for the World Economy (IfW Kiel).
    12. Rickels, Wilfried & Rehdanz, Katrin & Oschlies, Andreas, 2009. "Accounting aspects of ocean iron fertilization," Kiel Working Papers 1572, Kiel Institute for the World Economy (IfW Kiel).
    13. Paschen, Marius & Meier, Felix & Rickels, Wilfried, 2022. "Accounting for terrestrial and marine carbon sink enhancement," Kiel Working Papers 2204, Kiel Institute for the World Economy (IfW Kiel), revised 2022.
    14. Johnson, Elliott & Betts-Davies, Sam & Barrett, John, 2023. "Comparative analysis of UK net-zero scenarios: The role of energy demand reduction," Energy Policy, Elsevier, vol. 179(C).
    15. Tran, Nhuong & Chu, Long & Chan, Chin Yee & Peart, Jeffrey & Nasr-Allah, Ahmed M. & Charo-Karisa, Harrison, 2022. "Prospects of fish supply-demand and its implications for food and nutrition security in Egypt," SocArXiv pbdkg, Center for Open Science.
    16. Jessica M. Scott & Ben Belton & Kristi Mahrt & Shakuntala H. Thilsted & Jessica R. Bogard, 2023. "Food systems transformation, animal-source foods consumption, inequality, and nutrition in Myanmar," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 15(5), pages 1345-1364, October.
    17. Irene Blanco-Gutiérrez & Consuelo Varela-Ortega & Rhys Manners, 2020. "Evaluating Animal-Based Foods and Plant-Based Alternatives Using Multi-Criteria and SWOT Analyses," IJERPH, MDPI, vol. 17(21), pages 1-26, October.
    18. Vermunt, D.A. & Wojtynia, N. & Hekkert, M.P. & Van Dijk, J. & Verburg, R. & Verweij, P.A. & Wassen, M. & Runhaar, H., 2022. "Five mechanisms blocking the transition towards ‘nature-inclusive’ agriculture: A systemic analysis of Dutch dairy farming," Agricultural Systems, Elsevier, vol. 195(C).
    19. Migo-Sumagang, Maria Victoria & Tan, Raymond R. & Aviso, Kathleen B., 2023. "A multi-period model for optimizing negative emission technology portfolios with economic and carbon value discount rates," Energy, Elsevier, vol. 275(C).
    20. Albert, Osei-Owusu Kwame & Marianne, Thomsen & Jonathan, Lindahl & Nino, Javakhishvili Larsen & Dario, Caro, 2020. "Tracking the carbon emissions of Denmark's five regions from a producer and consumer perspective," Ecological Economics, Elsevier, vol. 177(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:171:y:2023:i:c:s1364032122008991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.