IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v24y2019i7d10.1007_s11027-018-9830-z.html
   My bibliography  Save this article

The potential environmental response to increasing ocean alkalinity for negative emissions

Author

Listed:
  • Sarah Gore

    (Cardiff University)

  • Phil Renforth

    (Cardiff University)

  • Rupert Perkins

    (Cardiff University)

Abstract

The negative emissions technology, artificial ocean alkalinization (AOA), aims to store atmospheric carbon dioxide (CO2) in the ocean by increasing total alkalinity (TA). Calcium carbonate saturation state (ΩCaCO3) and pH would also increase meaning that AOA could alleviate sensitive regions and ecosystems from ocean acidification. However, AOA could raise pH and ΩCaCO3 well above modern-day levels, and very little is known about the environmental and biological impact of this. After treating a red calcifying algae (Corallina spp.) to elevated TA seawater, carbonate production increased by 60% over a control. This has implication for carbon cycling in the past, but also constrains the environmental impact and efficiency of AOA. Carbonate production could reduce the efficiency of CO2 removal. Increasing TA, however, did not significantly influence Corallina spp. primary productivity, respiration, or photophysiology. These results show that AOA may not be intrinsically detrimental for Corallina spp. and that AOA has the potential to lessen the impacts of ocean acidification. However, the experiment tested a single species within a controlled environment to constrain a specific unknown, the rate change of calcification, and additional work is required to understand the impact of AOA on other organisms, whole ecosystems, and the global carbon cycle.

Suggested Citation

  • Sarah Gore & Phil Renforth & Rupert Perkins, 2019. "The potential environmental response to increasing ocean alkalinity for negative emissions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(7), pages 1191-1211, October.
  • Handle: RePEc:spr:masfgc:v:24:y:2019:i:7:d:10.1007_s11027-018-9830-z
    DOI: 10.1007/s11027-018-9830-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-018-9830-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-018-9830-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Greg H. Rau & Heather D. Willauer & Zhiyong Jason Ren, 2018. "The global potential for converting renewable electricity to negative-CO2-emissions hydrogen," Nature Climate Change, Nature, vol. 8(7), pages 621-625, July.
    2. Renforth, P. & Jenkins, B.G. & Kruger, T., 2013. "Engineering challenges of ocean liming," Energy, Elsevier, vol. 60(C), pages 442-452.
    3. Rebecca Albright & Lilian Caldeira & Jessica Hosfelt & Lester Kwiatkowski & Jana K. Maclaren & Benjamin M. Mason & Yana Nebuchina & Aaron Ninokawa & Julia Pongratz & Katharine L. Ricke & Tanya Rivlin , 2016. "Reversal of ocean acidification enhances net coral reef calcification," Nature, Nature, vol. 531(7594), pages 362-365, March.
    4. Kheshgi, Haroon S., 1995. "Sequestering atmospheric carbon dioxide by increasing ocean alkalinity," Energy, Elsevier, vol. 20(9), pages 915-922.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Serena Marco & Selene Varliero & Stefano Caserini & Giovanni Cappello & Guido Raos & Francesco Campo & Mario Grosso, 2023. "Techno-economic evaluation of buffered accelerated weathering of limestone as a CO2 capture and storage option," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(3), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanak, Dawid P. & Jenkins, Barrie G. & Kruger, Tim & Manovic, Vasilije, 2017. "High-efficiency negative-carbon emission power generation from integrated solid-oxide fuel cell and calciner," Applied Energy, Elsevier, vol. 205(C), pages 1189-1201.
    2. Stefano Caserini & Beatriz Barreto & Caterina Lanfredi & Giovanni Cappello & Dennis Ross Morrey & Mario Grosso, 2019. "Affordable CO2 negative emission through hydrogen from biomass, ocean liming, and CO2 storage," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(7), pages 1231-1248, October.
    3. Rau, Greg H. & Baird, Jim R., 2018. "Negative-CO2-emissions ocean thermal energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 265-272.
    4. Pedro Macedo & Mara Madaleno, 2022. "Global Temperature and Carbon Dioxide Nexus: Evidence from a Maximum Entropy Approach," Energies, MDPI, vol. 16(1), pages 1-13, December.
    5. Lomax, Guy & Workman, Mark & Lenton, Timothy & Shah, Nilay, 2015. "Reframing the policy approach to greenhouse gas removal technologies," Energy Policy, Elsevier, vol. 78(C), pages 125-136.
    6. Mohd Yasin, Nazlina Haiza & Ikegami, Azusa & Wood, Thomas K. & Yu, Chang-Ping & Haruyama, Tetsuya & Takriff, Mohd Sobri & Maeda, Toshinari, 2017. "Oceans as bioenergy pools for methane production using activated methanogens in waste sewage sludge," Applied Energy, Elsevier, vol. 202(C), pages 399-407.
    7. EdwardA. Parson & HollyJ. Buck, 2020. "Large-Scale Carbon Dioxide Removal: The Problem ofPhasedown," Global Environmental Politics, MIT Press, vol. 20(3), pages 70-92, August.
    8. Douglas Keller & Vishal Somanna & Philippe Drobinski & Cédric Tard, 2022. "Offshore CO 2 Capture and Utilization Using Floating Wind/PV Systems: Site Assessment and Efficiency Analysis in the Mediterranean," Energies, MDPI, vol. 15(23), pages 1-25, November.
    9. Mohammad Hossein Ahmadi & Mohammad Dehghani Madvar & Milad Sadeghzadeh & Mohammad Hossein Rezaei & Manuel Herrera & Shahaboddin Shamshirband, 2019. "Current Status Investigation and Predicting Carbon Dioxide Emission in Latin American Countries by Connectionist Models," Energies, MDPI, vol. 12(10), pages 1-20, May.
    10. Gunther Glenk & Stefan Reichelstein, 2022. "Reversible Power-to-Gas systems for energy conversion and storage," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Stoeckl, Natalie & Condie, Scott & Anthony, Ken, 2021. "Assessing changes to ecosystem service values at large geographic scale: A case study for Australia’s Great Barrier Reef," Ecosystem Services, Elsevier, vol. 51(C).
    12. Xiao, Jin & Li, Guohao & Xie, Ling & Wang, Shouyang & Yu, Lean, 2021. "Decarbonizing China's power sector by 2030 with consideration of technological progress and cross-regional power transmission," Energy Policy, Elsevier, vol. 150(C).
    13. Rob Swart & Natasha Marinova, 2010. "Policy options in a worst case climate change world," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(6), pages 531-549, August.
    14. Natalia Uribe-Castañeda & Alice Newton & Martin Le Tissier, 2018. "Coral Reef Socio-Ecological Systems Analysis & Restoration," Sustainability, MDPI, vol. 10(12), pages 1-11, November.
    15. Wang Lu & Pietro Bartocci & Alberto Abad & Aldo Bischi & Haiping Yang & Arturo Cabello & Margarita de Las Obras Loscertales & Mauro Zampilli & Francesco Fantozzi, 2023. "Dimensioning Air Reactor and Fuel Reactor of a Pressurized CLC Plant to Be Coupled to a Gas Turbine: Part 2, the Fuel Reactor," Energies, MDPI, vol. 16(9), pages 1-16, April.
    16. Guo, Fuxing & Wang, Yanping & Zhu, Haoyong & Zhang, Chuangye & Sun, Haowei & Fang, Zhuling & Yang, Jing & Zhang, Linsen & Mu, Yan & Man, Yu Bon & Wu, Fuyong, 2023. "Crop productivity and soil inorganic carbon change mediated by enhanced rock weathering in farmland: A comparative field analysis of multi-agroclimatic regions in central China," Agricultural Systems, Elsevier, vol. 210(C).
    17. Changqing Wang & Jie Xu & Zijian Zhou, 2022. "A Mini-Review on CO 2 Photoreduction by MgAl-LDH Based Materials," Energies, MDPI, vol. 15(21), pages 1-29, October.
    18. Naomi Vaughan & Timothy Lenton, 2011. "A review of climate geoengineering proposals," Climatic Change, Springer, vol. 109(3), pages 745-790, December.
    19. Tan, Raymond R. & Aviso, Kathleen B. & Foo, Dominic C.Y. & Lee, Jui-Yuan & Ubando, Aristotle T., 2019. "Optimal synthesis of negative emissions polygeneration systems with desalination," Energy, Elsevier, vol. 187(C).
    20. Li, Yanxue & Gao, Weijun & Ruan, Yingjun, 2019. "Potential and sensitivity analysis of long-term hydrogen production in resolving surplus RES generation—a case study in Japan," Energy, Elsevier, vol. 171(C), pages 1164-1172.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:24:y:2019:i:7:d:10.1007_s11027-018-9830-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.