IDEAS home Printed from https://ideas.repec.org/a/tpr/glenvp/v20y2020i3p70-92.html
   My bibliography  Save this article

Large-Scale Carbon Dioxide Removal: The Problem ofPhasedown

Author

Listed:
  • EdwardA. Parson
  • HollyJ. Buck

Abstract

Most scenarios that achieve present climate targets of limiting global heating to1.5°–2.0°C rely on large-scale carbon dioxide removal (CDR)to drive net emissions negative after mid-century. Scenarios that overshoot andreturn to a future temperature target, or that aim to restore some priorclimate, require CDR to be rapidly deployed, operated for a century or so, thengreatly reduced or phased out. This need for future phasedown presentschallenges to near-term policies that have been underexamined. A CDR enterpriseof climate-relevant scale will require financial flows of billions to trillionsof dollars per year. The enterprise and supporting policies will create risks oflock-in via mobilized actors whose interests favor continuance as well as othermechanisms. The future phasedown need implies suggestive guidance for near-termdecisions about removal methods and design of associated policy and businessenvironments. First, variation among methods’ scale constraints and coststructures suggests a rough ordering of methods by severity of future phasedownchallenges. Second, of the three potential means to motivateremovals—profitable products incorporating removed carbon, extendedemissions-pricing policies, or public procurement contracts—publicprocurement appears to present the fewest roadblocks to future phasedown.

Suggested Citation

  • EdwardA. Parson & HollyJ. Buck, 2020. "Large-Scale Carbon Dioxide Removal: The Problem ofPhasedown," Global Environmental Politics, MIT Press, vol. 20(3), pages 70-92, August.
  • Handle: RePEc:tpr:glenvp:v:20:y:2020:i:3:p:70-92
    as

    Download full text from publisher

    File URL: http://www.mitpressjournals.org/doi/pdf/10.1162/glep_a_00575
    Download Restriction: Access to PDF is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marshall Burke & Solomon M. Hsiang & Edward Miguel, 2015. "Global non-linear effect of temperature on economic production," Nature, Nature, vol. 527(7577), pages 235-239, November.
    2. Greg H. Rau, 2019. "The race to remove CO2 needs more contestants," Nature Climate Change, Nature, vol. 9(4), pages 256-256, April.
    3. Daniel L. Sanchez & Daniel M. Kammen, 2016. "A commercialization strategy for carbon-negative energy," Nature Energy, Nature, vol. 1(1), pages 1-4, January.
    4. Susana Borrás & Jakob Edler (ed.), 2014. "The Governance of Socio-Technical Systems," Books, Edward Elgar Publishing, number 16034.
    5. Turnheim, Bruno & Geels, Frank W., 2013. "The destabilisation of existing regimes: Confronting a multi-dimensional framework with a case study of the British coal industry (1913–1967)," Research Policy, Elsevier, vol. 42(10), pages 1749-1767.
    6. Sabine Fuss & Josep G. Canadell & Glen P. Peters & Massimo Tavoni & Robbie M. Andrew & Philippe Ciais & Robert B. Jackson & Chris D. Jones & Florian Kraxner & Nebosja Nakicenovic & Corinne Le Quéré & , 2014. "Betting on negative emissions," Nature Climate Change, Nature, vol. 4(10), pages 850-853, October.
    7. Pete Smith & Steven J. Davis & Felix Creutzig & Sabine Fuss & Jan Minx & Benoit Gabrielle & Etsushi Kato & Robert B. Jackson & Annette Cowie & Elmar Kriegler & Detlef P. van Vuuren & Joeri Rogelj & Ph, 2016. "Biophysical and economic limits to negative CO2 emissions," Nature Climate Change, Nature, vol. 6(1), pages 42-50, January.
    8. Greg H. Rau & Heather D. Willauer & Zhiyong Jason Ren, 2018. "The global potential for converting renewable electricity to negative-CO2-emissions hydrogen," Nature Climate Change, Nature, vol. 8(7), pages 621-625, July.
    9. Rose C. Cairns, 2014. "Climate geoengineering: issues of path‐dependence and socio‐technical lock‐in," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 5(5), pages 649-661, September.
    10. Daniel Sarewitz & Richard Nelson, 2008. "Three rules for technological fixes," Nature, Nature, vol. 456(7224), pages 871-872, December.
    11. Kelly Levin & Benjamin Cashore & Steven Bernstein & Graeme Auld, 2012. "Overcoming the tragedy of super wicked problems: constraining our future selves to ameliorate global climate change," Policy Sciences, Springer;Society of Policy Sciences, vol. 45(2), pages 123-152, June.
    12. Sabine Mathesius & Matthias Hofmann & Ken Caldeira & Hans Joachim Schellnhuber, 2015. "Long-term response of oceans to CO2 removal from the atmosphere," Nature Climate Change, Nature, vol. 5(12), pages 1107-1113, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joachim Peter Tilsted & Anders Bjørn, 2023. "Green frontrunner or indebted culprit? Assessing Denmark’s climate targets in light of fair contributions under the Paris Agreement," Climatic Change, Springer, vol. 176(8), pages 1-22, August.
    2. Benjamin K. Sovacool & Chad M. Baum & Sean Low, 2022. "Determining our climate policy future: expert opinions about negative emissions and solar radiation management pathways," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-50, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    2. Vermunt, D.A. & Wojtynia, N. & Hekkert, M.P. & Van Dijk, J. & Verburg, R. & Verweij, P.A. & Wassen, M. & Runhaar, H., 2022. "Five mechanisms blocking the transition towards ‘nature-inclusive’ agriculture: A systemic analysis of Dutch dairy farming," Agricultural Systems, Elsevier, vol. 195(C).
    3. P. A. Turner & C. B. Field & D. B. Lobell & D. L. Sanchez & K. J. Mach, 2018. "Unprecedented rates of land-use transformation in modelled climate change mitigation pathways," Nature Sustainability, Nature, vol. 1(5), pages 240-245, May.
    4. Ángel Galán-Martín & Daniel Vázquez & Selene Cobo & Niall Dowell & José Antonio Caballero & Gonzalo Guillén-Gosálbez, 2021. "Delaying carbon dioxide removal in the European Union puts climate targets at risk," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. Iris Wanzenböck & Joeri H Wesseling & Koen Frenken & Marko P Hekkert & K Matthias Weber, 0. "A framework for mission-oriented innovation policy: Alternative pathways through the problem–solution space," Science and Public Policy, Oxford University Press, vol. 47(4), pages 474-489.
    6. Dominic Woolf & Johannes Lehmann & David R. Lee, 2016. "Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration," Nature Communications, Nature, vol. 7(1), pages 1-11, December.
    7. Roberts, Cameron & Geels, Frank W., 2019. "Conditions for politically accelerated transitions: Historical institutionalism, the multi-level perspective, and two historical case studies in transport and agriculture," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 221-240.
    8. Johannes Pfeiffer, 2017. "Fossil Resources and Climate Change – The Green Paradox and Resource Market Power Revisited in General Equilibrium," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 77.
    9. Hoffmann, Sebastian & Weyer, Johannes & Longen, Jessica, 2017. "Discontinuation of the automobility regime? An integrated approach to multi-level governance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 391-408.
    10. Laurie Waller & Tim Rayner & Jason Chilvers & Clair Amanda Gough & Irene Lorenzoni & Andrew Jordan & Naomi Vaughan, 2020. "Contested framings of greenhouse gas removal and its feasibility: Social and political dimensions," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(4), July.
    11. Laatsit, Mart & Grillitsch, Markus & Fünfschilling, Lea, 2022. "Great expectations: the promises and limits of innovation policy in addressing societal challenges," Papers in Innovation Studies 2022/9, Lund University, CIRCLE - Centre for Innovation Research.
    12. M. Bugge , Markus & Coenen, Lars & Branstad, Are, 2015. "The Roles of Governance in Co-Evolutionary and Transformative Change - The Case of Active Ageing," Papers in Innovation Studies 2015/32, Lund University, CIRCLE - Centre for Innovation Research.
    13. Julianne DeAngelo & Inês Azevedo & John Bistline & Leon Clarke & Gunnar Luderer & Edward Byers & Steven J. Davis, 2021. "Energy systems in scenarios at net-zero CO2 emissions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    14. ElSayed, Mai & Aghahosseini, Arman & Caldera, Upeksha & Breyer, Christian, 2023. "Analysing the techno-economic impact of e-fuels and e-chemicals production for exports and carbon dioxide removal on the energy system of sunbelt countries – Case of Egypt," Applied Energy, Elsevier, vol. 343(C).
    15. Jason Hickel & Stéphane Hallegatte, 2022. "Can we live within environmental limits and still reduce poverty? Degrowth or decoupling?," Development Policy Review, Overseas Development Institute, vol. 40(1), January.
    16. Sugiyama, Masahiro & Fujimori, Shinichiro & Wada, Kenichi & Endo, Seiya & Fujii, Yasumasa & Komiyama, Ryoichi & Kato, Etsushi & Kurosawa, Atsushi & Matsuo, Yuhji & Oshiro, Ken & Sano, Fuminori & Shira, 2019. "Japan's long-term climate mitigation policy: Multi-model assessment and sectoral challenges," Energy, Elsevier, vol. 167(C), pages 1120-1131.
    17. Daniel Rosenbloom & Adrian Rinscheid, 2020. "Deliberate decline: An emerging frontier for the study and practice of decarbonization," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(6), November.
    18. Goldstein, Jenny E. & Neimark, Benjamin & Garvey, Brian & Phelps, Jacob, 2023. "Unlocking “lock-in” and path dependency: A review across disciplines and socio-environmental contexts," World Development, Elsevier, vol. 161(C).
    19. Kang, Jia-Ning & Zhang, Yun-Long & Chen, Weiming, 2022. "Delivering negative emissions innovation on the right track: A patent analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    20. Joaquín Bernal-Ramírez & Jair Ojeda-Joya & Camila Agudelo-Rivera & Felipe Clavijo-Ramírez & Carolina Durana-Ángel & Clark Granger-Castaño & Daniel Osorio-Rodríguez & Daniel Parra-Amado & José Pulido &, 2022. "Impacto macroeconómico del cambio climático en Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, issue 102, pages 1-62, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tpr:glenvp:v:20:y:2020:i:3:p:70-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kelly McDougall (email available below). General contact details of provider: https://direct.mit.edu/journals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.