IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v140y2019icp221-240.html
   My bibliography  Save this article

Conditions for politically accelerated transitions: Historical institutionalism, the multi-level perspective, and two historical case studies in transport and agriculture

Author

Listed:
  • Roberts, Cameron
  • Geels, Frank W.

Abstract

This article investigates the conditions under which policymakers are likely to decisively accelerate socio-technical transitions. We develop a conceptual framework that combines insights from historical institutionalism and the Multi-Level Perspective to better understand the political dimension in transitions, focusing particularly on the mechanisms of political defection from incumbent regime to niche-innovation. We distinguish two ideal-type patterns, one where external (landscape) shocks create a ‘critical juncture’ and one where gradual feedbacks change the balance of power between niche-innovation and regime. We also identify more proximate conditions such as external pressures on policymakers (from business interests, mass publics, and technologies) and policy-internal developments (changes in problem definitions and access to institutional arrangements). We apply this framework to two historical case studies in which UK policymakers deliberately accelerated transitions: the transition from rail to road transport (1920–1970); and the transition from traditional mixed agriculture to specialised wheat agriculture (1920–1970). We analyse the conditions for major policy change in each case and draw more general conclusions. We also discuss implications for contemporary low-carbon transitions, observing that while some favourable conditions are in place, they do not yet meet all the prerequisites for political acceleration.

Suggested Citation

  • Roberts, Cameron & Geels, Frank W., 2019. "Conditions for politically accelerated transitions: Historical institutionalism, the multi-level perspective, and two historical case studies in transport and agriculture," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 221-240.
  • Handle: RePEc:eee:tefoso:v:140:y:2019:i:c:p:221-240
    DOI: 10.1016/j.techfore.2018.11.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162518305079
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2018.11.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fouquet, Roger, 2012. "Trends in income and price elasticities of transport demand (1850–2010)," Energy Policy, Elsevier, vol. 50(C), pages 62-71.
    2. Bell, Stephen, 2011. "Do We Really Need a New ‘Constructivist Institutionalism’ to Explain Institutional Change?," British Journal of Political Science, Cambridge University Press, vol. 41(4), pages 883-906, October.
    3. Weaver, Kent, 2010. "Paths and Forks or Chutes and Ladders?: Negative Feedbacks and Policy Regime Change," Journal of Public Policy, Cambridge University Press, vol. 30(2), pages 137-162, August.
    4. Arthur, W Brian, 1989. "Competing Technologies, Increasing Returns, and Lock-In by Historical Events," Economic Journal, Royal Economic Society, vol. 99(394), pages 116-131, March.
    5. Raghu Garud & Arun Kumaraswamy & Peter Karnøe, 2010. "Path Dependence or Path Creation?," Journal of Management Studies, Wiley Blackwell, vol. 47(4), pages 760-774, June.
    6. Steven Bernstein & Matthew Hoffmann, 2018. "The politics of decarbonization and the catalytic impact of subnational climate experiments," Policy Sciences, Springer;Society of Policy Sciences, vol. 51(2), pages 189-211, June.
    7. Mitchell,B. R., 2011. "British Historical Statistics," Cambridge Books, Cambridge University Press, number 9781107402447.
    8. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    9. Christiana Figueres & Hans Joachim Schellnhuber & Gail Whiteman & Johan Rockström & Anthony Hobley & Stefan Rahmstorf, 2017. "Three years to safeguard our climate," Nature, Nature, vol. 546(7660), pages 593-595, June.
    10. Turnheim, Bruno & Geels, Frank W., 2013. "The destabilisation of existing regimes: Confronting a multi-dimensional framework with a case study of the British coal industry (1913–1967)," Research Policy, Elsevier, vol. 42(10), pages 1749-1767.
    11. Wilt, Alan F., 2001. "Food for War: Agriculture and Rearmament in Britain before the Second World War," OUP Catalogue, Oxford University Press, number 9780198208716, Decembrie.
    12. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    13. Glen P. Peters & Robbie M. Andrew & Josep G. Canadell & Sabine Fuss & Robert B. Jackson & Jan Ivar Korsbakken & Corinne Le Quéré & Nebojsa Nakicenovic, 2017. "Key indicators to track current progress and future ambition of the Paris Agreement," Nature Climate Change, Nature, vol. 7(2), pages 118-122, February.
    14. Tobias S. Schmidt & Sebastian Sewerin, 2017. "Technology as a driver of climate and energy politics," Nature Energy, Nature, vol. 2(6), pages 1-3, June.
    15. Kelly Levin & Benjamin Cashore & Steven Bernstein & Graeme Auld, 2012. "Overcoming the tragedy of super wicked problems: constraining our future selves to ameliorate global climate change," Policy Sciences, Springer;Society of Policy Sciences, vol. 45(2), pages 123-152, June.
    16. Matthew Lockwood & Caroline Kuzemko & Catherine Mitchell & Richard Hoggett, 2017. "Historical institutionalism and the politics of sustainable energy transitions: A research agenda," Environment and Planning C, , vol. 35(2), pages 312-333, March.
    17. Marletto, Gerardo, 2019. "Who will drive the transition to self-driving? A socio-technical analysis of the future impact of automated vehicles," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 221-234.
    18. Hess, David J., 2014. "Sustainability transitions: A political coalition perspective," Research Policy, Elsevier, vol. 43(2), pages 278-283.
    19. Smith, Adrian & Stirling, Andy & Berkhout, Frans, 2005. "The governance of sustainable socio-technical transitions," Research Policy, Elsevier, vol. 34(10), pages 1491-1510, December.
    20. Hubert Schmitz, 2017. "Who drives climate-relevant policies in the rising powers?," New Political Economy, Taylor & Francis Journals, vol. 22(5), pages 521-540, September.
    21. Johan Schot & Laur Kanger & Geert Verbong, 2016. "The roles of users in shaping transitions to new energy systems," Nature Energy, Nature, vol. 1(5), pages 1-7, May.
    22. Normann, Håkon Endresen, 2017. "Policy networks in energy transitions: The cases of carbon capture and storage and offshore wind in Norway," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 80-93.
    23. Farla, Jacco & Markard, Jochen & Raven, Rob & Coenen, Lars, 2012. "Sustainability transitions in the making: A closer look at actors, strategies and resources," Technological Forecasting and Social Change, Elsevier, vol. 79(6), pages 991-998.
    24. Andrew Jordan & Elah Matt, 2014. "Designing policies that intentionally stick: policy feedback in a changing climate," Policy Sciences, Springer;Society of Policy Sciences, vol. 47(3), pages 227-247, September.
    25. Foxon, Timothy J. & Pearson, Peter J.G. & Arapostathis, Stathis & Carlsson-Hyslop, Anna & Thornton, Judith, 2013. "Branching points for transition pathways: assessing responses of actors to challenges on pathways to a low carbon future," Energy Policy, Elsevier, vol. 52(C), pages 146-158.
    26. Geels, Frank W., 2004. "From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory," Research Policy, Elsevier, vol. 33(6-7), pages 897-920, September.
    27. Walker, William, 2000. "Entrapment in large technology systems: institutional commitment and power relations," Research Policy, Elsevier, vol. 29(7-8), pages 833-846, August.
    28. James Meadowcroft, 2016. "Let's Get This Transition Moving!," Canadian Public Policy, University of Toronto Press, vol. 42(s1), pages 10-17, November.
    29. Sine, Wesley D. & David, Robert J., 2003. "Environmental jolts, institutional change, and the creation of entrepreneurial opportunity in the US electric power industry," Research Policy, Elsevier, vol. 32(2), pages 185-207, February.
    30. Pierson, Paul, 2000. "Increasing Returns, Path Dependence, and the Study of Politics," American Political Science Review, Cambridge University Press, vol. 94(2), pages 251-267, June.
    31. James Meadowcroft, 2009. "What about the politics? Sustainable development, transition management, and long term energy transitions," Policy Sciences, Springer;Society of Policy Sciences, vol. 42(4), pages 323-340, November.
    32. Kern, Florian & Verhees, Bram & Raven, Rob & Smith, Adrian, 2015. "Empowering sustainable niches: Comparing UK and Dutch offshore wind developments," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 344-355.
    33. Brem, Alexander & Radziwon, Agnieszka, 2017. "Efficient Triple Helix collaboration fostering local niche innovation projects – A case from Denmark," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 130-141.
    34. Hall, Peter A. & Taylor, Rosemary C. R., 1996. "Political science and the three new institutionalisms," MPIfG Discussion Paper 96/6, Max Planck Institute for the Study of Societies.
    35. Sovacool, Benjamin K., 2009. "The importance of comprehensiveness in renewable electricity and energy-efficiency policy," Energy Policy, Elsevier, vol. 37(4), pages 1529-1541, April.
    36. Rosenbloom, Daniel & Berton, Harris & Meadowcroft, James, 2016. "Framing the sun: A discursive approach to understanding multi-dimensional interactions within socio-technical transitions through the case of solar electricity in Ontario, Canada," Research Policy, Elsevier, vol. 45(6), pages 1275-1290.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Watson, Anna, 2022. "Designing publicly funded organisations for accelerated low carbon innovation: A case study of the ETI, UK and ARPA-E, US," Energy Policy, Elsevier, vol. 168(C).
    2. Cameron Allen & Annabel Biddulph & Thomas Wiedmann & Matteo Pedercini & Shirin Malekpour, 2024. "Modelling six sustainable development transformations in Australia and their accelerators, impediments, enablers, and interlinkages," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Löhr, Meike & Mattes, Jannika, 2020. "Facing transition phase two: Analysing actor strategies in a stagnating acceleration phase," Papers in Innovation Studies 2020/12, Lund University, CIRCLE - Centre for Innovation Research.
    4. Geels, Frank W. & Ayoub, Martina, 2023. "A socio-technical transition perspective on positive tipping points in climate change mitigation: Analysing seven interacting feedback loops in offshore wind and electric vehicles acceleration," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    5. André Sorensen & Anna-Katharina Brenner, 2021. "Cities, Urban Property Systems, and Sustainability Transitions: Contested Processes of Institutional Change and the Regulation of Urban Property Development," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    6. Annosi, Maria Carmela & Ráez, Rosa María Oliva & Appio, Francesco Paolo & Del Giudice, Teresa, 2022. "An integrative review of innovations in the agricultural sector: The roles of agency, structure, and their dynamic interplay," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    7. Medina-Molina, Cayetano & Pérez-Macías, Noemí & Fernández-Fernádez, José Luis, 2023. "The use of micromobility in different contexts. An explanation through the multilevel perspective and QCA," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    8. Gruber, Mario, 2020. "An evolutionary perspective on adoption-diffusion theory," Journal of Business Research, Elsevier, vol. 116(C), pages 535-541.
    9. Monios, Jason & Bergqvist, Rickard, 2020. "Logistics and the networked society: A conceptual framework for smart network business models using electric autonomous vehicles (EAVs)," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    10. Wu, Zhanglan & Shao, Qinglong & Su, Yantao & Zhang, Dan, 2021. "A socio-technical transition path for new energy vehicles in China: A multi-level perspective," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    11. Trahan, Ryan Thomas & Hess, David J., 2022. "Will power be local? The role of local power organizations in energy transition acceleration," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    12. Löhr, Meike & Mattes, Jannika, 2022. "Facing transition phase two: Analysing actor strategies in a stagnating acceleration phase," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    13. Haddad, Carolina R. & Bergek, Anna, 2023. "Towards an integrated framework for evaluating transformative innovation policy," Research Policy, Elsevier, vol. 52(2).
    14. Moshel, Smadar, 2022. "The Historical Roots of Governance Deficits in Israeli Early Childhood Education and Care Services," Children and Youth Services Review, Elsevier, vol. 133(C).
    15. Geels, Frank W., 2020. "Micro-foundations of the multi-level perspective on socio-technical transitions: Developing a multi-dimensional model of agency through crossovers between social constructivism, evolutionary economics," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    16. Tor Håkon Jackson Inderberg, 2020. "Centrally Decentralising? Analysing Key Policies and Pathways in Norway’s Electricity Transitions," Politics and Governance, Cogitatio Press, vol. 8(3), pages 173-184.
    17. Cheng Wang & Tao Lv & Rongjiang Cai & Jianfeng Xu & Liya Wang, 2022. "Bibliometric Analysis of Multi-Level Perspective on Sustainability Transition Research," Sustainability, MDPI, vol. 14(7), pages 1-31, March.
    18. Hochstetler, Kathryn, 2021. "Climate institutions in Brazil: three decades of building and dismantling climate capacity," LSE Research Online Documents on Economics 111417, London School of Economics and Political Science, LSE Library.
    19. Winkelmann, Ricarda & Donges, Jonathan F. & Smith, E. Keith & Milkoreit, Manjana & Eder, Christina & Heitzig, Jobst & Katsanidou, Alexia & Wiedermann, Marc & Wunderling, Nico & Lenton, Timothy M., 2022. "Social tipping processes towards climate action: A conceptual framework," Ecological Economics, Elsevier, vol. 192(C).
    20. Kivimaa, Paula & Rogge, Karoline S., 2022. "Interplay of policy experimentation and institutional change in sustainability transitions: The case of mobility as a service in Finland," Research Policy, Elsevier, vol. 51(1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edmondson, Duncan L. & Kern, Florian & Rogge, Karoline S., 2019. "The co-evolution of policy mixes and socio-technical systems: Towards a conceptual framework of policy mix feedback in sustainability transitions," Research Policy, Elsevier, vol. 48(10).
    2. Turnheim, Bruno & Nykvist, Björn, 2019. "Opening up the feasibility of sustainability transitions pathways (STPs): Representations, potentials, and conditions," Research Policy, Elsevier, vol. 48(3), pages 775-788.
    3. Matthew Lockwood & Caroline Kuzemko & Catherine Mitchell & Richard Hoggett, 2017. "Historical institutionalism and the politics of sustainable energy transitions: A research agenda," Environment and Planning C, , vol. 35(2), pages 312-333, March.
    4. Cheng Wang & Tao Lv & Rongjiang Cai & Jianfeng Xu & Liya Wang, 2022. "Bibliometric Analysis of Multi-Level Perspective on Sustainability Transition Research," Sustainability, MDPI, vol. 14(7), pages 1-31, March.
    5. Daniel Rosenbloom & Adrian Rinscheid, 2020. "Deliberate decline: An emerging frontier for the study and practice of decarbonization," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(6), November.
    6. André Sorensen & Anna-Katharina Brenner, 2021. "Cities, Urban Property Systems, and Sustainability Transitions: Contested Processes of Institutional Change and the Regulation of Urban Property Development," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    7. Weigelt, Carmen & Lu, Shaohua & Verhaal, J. Cameron, 2021. "Blinded by the sun: The role of prosumers as niche actors in incumbent firms’ adoption of solar power during sustainability transitions," Research Policy, Elsevier, vol. 50(9).
    8. Kejia Yang & Johan Schot & Bernhard Truffer, 2020. "Shaping the Directionality of Sustainability Transitions: The Diverging Development Patterns of Solar PV in Two Chinese Provinces," SPRU Working Paper Series 2020-14, SPRU - Science Policy Research Unit, University of Sussex Business School.
    9. Pel, Bonno & Raven, Rob & van Est, Rinie, 2020. "Transitions governance with a sense of direction: synchronization challenges in the case of the dutch ‘Driverless Car’ transition," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    10. Geels, Frank W., 2020. "Micro-foundations of the multi-level perspective on socio-technical transitions: Developing a multi-dimensional model of agency through crossovers between social constructivism, evolutionary economics," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    11. Magda M. Smink & Marko P. Hekkert & Simona O. Negro, 2015. "Keeping sustainable innovation on a leash? Exploring incumbents’ institutional strategies," Business Strategy and the Environment, Wiley Blackwell, vol. 24(2), pages 86-101, February.
    12. Kivimaa, Paula & Kern, Florian, 2016. "Creative destruction or mere niche support? Innovation policy mixes for sustainability transitions," Research Policy, Elsevier, vol. 45(1), pages 205-217.
    13. Sorrell, Steve, 2018. "Explaining sociotechnical transitions: A critical realist perspective," Research Policy, Elsevier, vol. 47(7), pages 1267-1282.
    14. Sillig, Cécile, 2022. "The role of ideology in grassroots innovation: An application of the arenas of development framework to organic in Europe," Ecological Economics, Elsevier, vol. 191(C).
    15. Contesse, Maria & Duncan, Jessica & Legun, Katharine & Klerkx, Laurens, 2021. "Unravelling non-human agency in sustainability transitions," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    16. Hess, David J., 2020. "Incumbent-led transitions and civil society: Autonomous vehicle policy and consumer organizations in the United States," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    17. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    18. Sibylle Bui, 2021. "Enacting Transitions—The Combined Effect of Multiple Niches in Whole System Reconfiguration," Sustainability, MDPI, vol. 13(11), pages 1-21, May.
    19. Sebastian Sewerin & Daniel Béland & Benjamin Cashore, 2020. "Designing policy for the long term: agency, policy feedback and policy change," Policy Sciences, Springer;Society of Policy Sciences, vol. 53(2), pages 243-252, June.
    20. Kasper Ampe & Erik Paredis & Lotte Asveld & Patricia Osseweijer & Thomas Block, 2021. "Power struggles in policy feedback processes: incremental steps towards a circular economy within Dutch wastewater policy," Policy Sciences, Springer;Society of Policy Sciences, vol. 54(3), pages 579-607, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:140:y:2019:i:c:p:221-240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.