IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v119y2014icp79-84.html
   My bibliography  Save this article

Effect of pelletizing conditions on combustion behaviour of single wood pellet

Author

Listed:
  • Biswas, Amit Kumar
  • Rudolfsson, Magnus
  • Broström, Markus
  • Umeki, Kentaro

Abstract

This paper presents how pelletizing die temperature and moisture content affect combustion behaviour of single wood pellet. Pine wood particles with two different moisture contents (i.e. 1wt.% and 12wt.%) were pelletized in a laboratory-scale single pelletizer (single die pellets) at die temperature of 20, 100, 150 and 200°C. The pellets were combusted in a laboratory scale furnace at 800°C. Time required for single pellet combustion generally increased with both increase of pelletizing temperature and moisture content of biomass. In addition, combustion behaviour of single die pellets was significantly different than those produced in a pilot scale pelletizing plant (semi-industrial scale pellet). That difference was due to variation in physical properties of pellets (e.g. density, and morphology).

Suggested Citation

  • Biswas, Amit Kumar & Rudolfsson, Magnus & Broström, Markus & Umeki, Kentaro, 2014. "Effect of pelletizing conditions on combustion behaviour of single wood pellet," Applied Energy, Elsevier, vol. 119(C), pages 79-84.
  • Handle: RePEc:eee:appene:v:119:y:2014:i:c:p:79-84
    DOI: 10.1016/j.apenergy.2013.12.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191400018X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.12.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Larsson, Sylvia H. & Lestander, Torbjörn A. & Crompton, Dave & Melin, Staffan & Sokhansanj, Shahab, 2012. "Temperature patterns in large scale wood pellet silo storage," Applied Energy, Elsevier, vol. 92(C), pages 322-327.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sae Byul Kang & Bong Suk Sim & Jong Jin Kim, 2017. "Volume and Mass Measurement of a Burning Wood Pellet by Image Processing," Energies, MDPI, vol. 10(5), pages 1-13, May.
    2. Przemysław Rybiński & Bartłomiej Syrek & Mirosław Szwed & Dariusz Bradło & Witold Żukowski & Anna Marzec & Magdalena Śliwka-Kaszyńska, 2021. "Influence of Thermal Decomposition of Wood and Wood-Based Materials on the State of the Atmospheric Air. Emissions of Toxic Compounds and Greenhouse Gases," Energies, MDPI, vol. 14(11), pages 1-14, June.
    3. Juraj Priscak & Katharina Fürsatz & Matthias Kuba & Nils Skoglund & Florian Benedikt & Hermann Hofbauer, 2020. "Investigation of the Formation of Coherent Ash Residues during Fluidized Bed Gasification of Wheat Straw Lignin," Energies, MDPI, vol. 13(15), pages 1-16, August.
    4. Gendek, Arkadiusz & Aniszewska, Monika & Owoc, Danuta & Tamelová, Barbora & Malaťák, Jan & Velebil, Jan & Krilek, Jozef, 2023. "Physico-mechanical and energy properties of pellets made from ground walnut shells, coniferous tree cones and their mixtures," Renewable Energy, Elsevier, vol. 211(C), pages 248-258.
    5. Bruno Rafael de Almeida Moreira & Ronaldo da Silva Viana & Victor Hugo Cruz & Paulo Renato Matos Lopes & Celso Tadao Miasaki & Anderson Chagas Magalhães & Paulo Alexandre Monteiro de Figueiredo & Luca, 2020. "Anti-Thermal Shock Binding of Liquid-State Food Waste to Non-Wood Pellets," Energies, MDPI, vol. 13(12), pages 1-26, June.
    6. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    7. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "Mixed biomass pellets for thermal energy production: A review of combustion models," Applied Energy, Elsevier, vol. 127(C), pages 135-140.
    8. Daniel Lustenberger & Joris Strassburg & Tom Strebel & Fabienne Mangold & Timothy Griffin, 2022. "Simulation Tool for the Development of a Staged Combustion Pellet Stove Controller," Energies, MDPI, vol. 15(19), pages 1-18, September.
    9. Whittaker, Carly & Shield, Ian, 2017. "Factors affecting wood, energy grass and straw pellet durability – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 1-11.
    10. Kamal Baharin, Nur Syahirah & Koesoemadinata, Vidya Cundasari & Nakamura, Shunsuke & Yahya, Wira Jazair & Muhammad Yuzir, Muhamad Ali & Md Akhir, Fazrena Nadia & Iwamoto, Koji & Othman, Nor’azizi & Id, 2020. "Conversion and characterization of Bio-Coke from abundant biomass waste in Malaysia," Renewable Energy, Elsevier, vol. 162(C), pages 1017-1025.
    11. Lenka Štofová & Petra Szaryszová & Bohuslava Mihalčová, 2021. "Testing the Bioeconomic Options of Transitioning to Solid Recovered Fuel: A Case Study of a Thermal Power Plant in Slovakia," Energies, MDPI, vol. 14(6), pages 1-20, March.
    12. Vershinina, Ksenia Yu & Dorokhov, Vadim V. & Romanov, Daniil S. & Strizhak, Pavel A., 2022. "Combustion stages of waste-derived blends burned as pellets, layers, and droplets of slurry," Energy, Elsevier, vol. 251(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamid Rezaei & Fahimeh Yazdan Panah & C. Jim Lim & Shahab Sokhansanj, 2020. "Pelletization of Refuse-Derived Fuel with Varying Compositions of Plastic, Paper, Organic and Wood," Sustainability, MDPI, vol. 12(11), pages 1-11, June.
    2. Jiayu Wei & Can Yao & Changdong Sheng, 2023. "Modelling Self-Heating and Self-Ignition Processes during Biomass Storage," Energies, MDPI, vol. 16(10), pages 1-17, May.
    3. Whittaker, Carly & Shield, Ian, 2017. "Factors affecting wood, energy grass and straw pellet durability – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 1-11.
    4. Li, Hui & Liu, Xinhua & Legros, Robert & Bi, Xiaotao T. & Jim Lim, C. & Sokhansanj, Shahab, 2012. "Pelletization of torrefied sawdust and properties of torrefied pellets," Applied Energy, Elsevier, vol. 93(C), pages 680-685.
    5. Sahoo, Kamalakanta & Bilek, E.M. (Ted) & Mani, Sudhagar, 2018. "Techno-economic and environmental assessments of storing woodchips and pellets for bioenergy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 27-39.
    6. Kong, Lingjun & Tian, ShuangHong & He, Chun & Du, Changming & Tu, YuTing & Xiong, Ya, 2012. "Effect of waste wrapping paper fiber as a “solid bridge” on physical characteristics of biomass pellets made from wood sawdust," Applied Energy, Elsevier, vol. 98(C), pages 33-39.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:119:y:2014:i:c:p:79-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.