IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v244y2025ics096014812500240x.html
   My bibliography  Save this article

Co-pelleting of biomass feedstock: Effects of blend types and ratios on mechanical behavior and physical properties

Author

Listed:
  • He, Haomeng
  • Wu, Kai
  • Wang, Yu
  • Sun, Yu
  • Wu, Jiahong

Abstract

Co-pelleting of feedstock blends was conducted in the single pelleting press to improve pellet quality. The mechanical behavior of feedstock blends during the densification process was analyzed based on chemical component contents. Physical properties were evaluated. Results show total absorbance intensity reflects the differences in chemical component contents. Time to default force, the specific at the same time, boundary point, maximum force, and relaxation stages vary with blend additions because chemical components have synergistic effects. Orange peel (OP) rich in pectin increases pellet strength with a relative percentage of −8.29–9.53 % and immersing time of 68.97–162.07 % than pure corn stalks (CS) pellets. Rapeseed oil cake (ROC) rich in protein reduces energy consumption and enhances water resistance by 62.07–213.79 %. Walnut shells (WS) with lignin increase cracks on the pellet surface and weaken the binding force. All feedstock blends improve energy density, 30ROC70CS are the best recipes for transport and quality upgrades. This study proves the potential of industrial and municipal wastes for biomass pellet production and provides references to select feedstock types and optimization for formulation recipes for pelleting.

Suggested Citation

  • He, Haomeng & Wu, Kai & Wang, Yu & Sun, Yu & Wu, Jiahong, 2025. "Co-pelleting of biomass feedstock: Effects of blend types and ratios on mechanical behavior and physical properties," Renewable Energy, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:renene:v:244:y:2025:i:c:s096014812500240x
    DOI: 10.1016/j.renene.2025.122578
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812500240X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Sunyong & Kim, Seok Jun & Oh, Kwang Cheol & Cho, Lahoon & Kim, Min Jun & Jeong, In Seon & Lee, Chung Geon & Kim, DaeHyun, 2020. "Investigation of agro-byproduct pellet properties and improvement in pellet quality through mixing," Energy, Elsevier, vol. 190(C).
    2. Liu, Zhijia & Liu, Xing'e & Fei, Benhua & Jiang, Zehui & Cai, Zhiyong & Yu, Yan, 2013. "The properties of pellets from mixing bamboo and rice straw," Renewable Energy, Elsevier, vol. 55(C), pages 1-5.
    3. Cherney, Jerome H. & Verma, Vijay Kumar, 2013. "Grass pellet Quality Index: A tool to evaluate suitability of grass pellets for small scale combustion systems," Applied Energy, Elsevier, vol. 103(C), pages 679-684.
    4. Pegoretti Leite de Souza, Hector Jesus & Muñoz, Fernando & Mendonça, Regis Teixeira & Sáez, Katia & Olave, Rodrigo & Segura, Cristina & de Souza, Daniel P.L. & de Paula Protásio, Thiago & Rodríguez-So, 2021. "Influence of lignin distribution, physicochemical characteristics and microstructure on the quality of biofuel pellets made from four different types of biomass," Renewable Energy, Elsevier, vol. 163(C), pages 1802-1816.
    5. Lisowski, Aleksander & Pajor, Małgorzata & Świętochowski, Adam & Dąbrowska, Magdalena & Klonowski, Jacek & Mieszkalski, Leszek & Ekielski, Adam & Stasiak, Mateusz & Piątek, Michał, 2019. "Effects of moisture content, temperature, and die thickness on the compaction process, and the density and strength of walnut shell pellets," Renewable Energy, Elsevier, vol. 141(C), pages 770-781.
    6. Hu, Qiang & Shao, Jingai & Yang, Haiping & Yao, Dingding & Wang, Xianhua & Chen, Hanping, 2015. "Effects of binders on the properties of bio-char pellets," Applied Energy, Elsevier, vol. 157(C), pages 508-516.
    7. Bot, Bill Vaneck & Axaopoulos, Petros J. & Sakellariou, Evangelos I. & Sosso, Olivier Thierry & Tamba, Jean Gaston, 2022. "Energetic and economic analysis of biomass briquettes production from agricultural residues," Applied Energy, Elsevier, vol. 321(C).
    8. Biswas, Amit Kumar & Rudolfsson, Magnus & Broström, Markus & Umeki, Kentaro, 2014. "Effect of pelletizing conditions on combustion behaviour of single wood pellet," Applied Energy, Elsevier, vol. 119(C), pages 79-84.
    9. García, R. & González-Vázquez, M.P. & Martín, A.J. & Pevida, C. & Rubiera, F., 2020. "Pelletization of torrefied biomass with solid and liquid bio-additives," Renewable Energy, Elsevier, vol. 151(C), pages 175-183.
    10. Gendek, Arkadiusz & Aniszewska, Monika & Owoc, Danuta & Tamelová, Barbora & Malaťák, Jan & Velebil, Jan & Krilek, Jozef, 2023. "Physico-mechanical and energy properties of pellets made from ground walnut shells, coniferous tree cones and their mixtures," Renewable Energy, Elsevier, vol. 211(C), pages 248-258.
    11. Granado, Marcos Paulo Patta & Suhogusoff, Yuri Valentinovich Machado & Santos, Luis Ricardo Oliveira & Yamaji, Fabio Minoru & De Conti, Andrea Cressoni, 2021. "Effects of pressure densification on strength and properties of cassava waste briquettes," Renewable Energy, Elsevier, vol. 167(C), pages 306-312.
    12. Dorokhov, V.V. & Nyashina, G.S. & Romanov, D.S. & Strizhak, P.A., 2024. "Combustion and mechanical properties of pellets from biomass and industrial waste," Renewable Energy, Elsevier, vol. 228(C).
    13. Yılmaz, Hasan & Çanakcı, Murad & Topakcı, Mehmet & Karayel, Davut & Yiğit, Mete & Ortaçeşme, Derya, 2023. "In-situ pelletization of campus biomass residues: Case study for Akdeniz University," Renewable Energy, Elsevier, vol. 212(C), pages 972-983.
    14. Hossain, Tasmin & Jones, Daniela S. & Godfrey, Edward & Saloni, Daniel & Sharara, Mahmoud & Hartley, Damon S., 2024. "Characterizing value-added pellets obtained from blends of miscanthus, corn stover, and switchgrass," Renewable Energy, Elsevier, vol. 227(C).
    15. Navalta, Carl John Louie G. & Banaag, Kristian Gregg C. & Raboy, Von Adrian O. & Go, Alchris W. & Cabatingan, Luis K. & Ju, Yi-Hsu, 2020. "Solid fuel from Co-briquetting of sugarcane bagasse and rice bran," Renewable Energy, Elsevier, vol. 147(P1), pages 1941-1958.
    16. Imberti, Rodrigo Mazolini & Carvalho Padilha, Janine & da Silva Arrieche, Leonardo, 2024. "Production of sawdust and chicken fat briquettes as an alternative solid fuel," Renewable Energy, Elsevier, vol. 228(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    2. Seraj, Somaye & Azargohar, Ramin & Dalai, Ajay K., 2025. "Dry torrefaction and hydrothermal carbonization of biomass to fuel pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    3. Sui, Haiqing & Chen, Jianfeng & Cheng, Wei & Zhu, Youjian & Zhang, Wennan & Hu, Junhao & Jiang, Hao & Shao, Jing'ai & Chen, Hanping, 2024. "Effect of oxidative torrefaction on fuel and pelletizing properties of agricultural biomass in comparison with non-oxidative torrefaction," Renewable Energy, Elsevier, vol. 226(C).
    4. Sunyong Park & Hui-Rim Jeong & Yun-A Shin & Seok-Jun Kim & Young-Min Ju & Kwang-Cheol Oh & La-Hoon Cho & DaeHyun Kim, 2021. "Performance Optimisation of Fuel Pellets Comprising Pepper Stem and Coffee Grounds through Mixing Ratios and Torrefaction," Energies, MDPI, vol. 14(15), pages 1-16, August.
    5. Jianbiao Liu & Xuya Jiang & Yanhao Yuan & Huanhuan Chen & Wenbin Zhang & Hongzhen Cai & Feng Gao, 2022. "Densification of Yak Manure Biofuel Pellets and Evaluation of Parameters: Effects on Properties," Energies, MDPI, vol. 15(5), pages 1-14, February.
    6. Guo, Feihong & Chen, Jun & He, Yi & Gardy, Jabbar & Sun, Yahui & Jiang, Jingyu & Jiang, Xiaoxiang, 2022. "Upgrading agro-pellets by torrefaction and co-pelletization process using food waste as a pellet binder," Renewable Energy, Elsevier, vol. 191(C), pages 213-224.
    7. Sae Byul Kang & Bong Suk Sim & Jong Jin Kim, 2017. "Volume and Mass Measurement of a Burning Wood Pellet by Image Processing," Energies, MDPI, vol. 10(5), pages 1-13, May.
    8. Gendek, Arkadiusz & Aniszewska, Monika & Owoc, Danuta & Tamelová, Barbora & Malaťák, Jan & Velebil, Jan & Krilek, Jozef, 2023. "Physico-mechanical and energy properties of pellets made from ground walnut shells, coniferous tree cones and their mixtures," Renewable Energy, Elsevier, vol. 211(C), pages 248-258.
    9. Yılmaz, Hasan & Çanakcı, Murad & Topakcı, Mehmet & Karayel, Davut & Yiğit, Mete & Ortaçeşme, Derya, 2023. "In-situ pelletization of campus biomass residues: Case study for Akdeniz University," Renewable Energy, Elsevier, vol. 212(C), pages 972-983.
    10. Bill Vaneck Bot & Petros J. Axaopoulos & Evangelos I. Sakellariou & Olivier Thierry Sosso & Jean Gaston Tamba, 2023. "Economic Viability Investigation of Mixed-Biomass Briquettes Made from Agricultural Residues for Household Cooking Use," Energies, MDPI, vol. 16(18), pages 1-13, September.
    11. Yantao Yang & Lei Song & Yuanna Li & Yilin Shen & Mei Yang & Yunbo Wang & Hesheng Zheng & Wei Qi & Tingzhou Lei, 2025. "Effects of Different Biomass Types on Pellet Qualities and Processing Energy Consumption," Agriculture, MDPI, vol. 15(3), pages 1-19, January.
    12. García, R. & Gil, M.V. & Fanjul, A. & González, A. & Majada, J. & Rubiera, F. & Pevida, C., 2021. "Residual pyrolysis biochar as additive to enhance wood pellets quality," Renewable Energy, Elsevier, vol. 180(C), pages 850-859.
    13. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "Mixed biomass pellets for thermal energy production: A review of combustion models," Applied Energy, Elsevier, vol. 127(C), pages 135-140.
    14. Dao, Cuong N. & Salam, Abdul & Kim Oanh, Nguyen Thi & Tabil, Lope G., 2022. "Effects of length-to-diameter ratio, pinewood sawdust, and sodium lignosulfonate on quality of rice straw pellets produced via a flat die pellet mill," Renewable Energy, Elsevier, vol. 181(C), pages 1140-1154.
    15. Marreiro, Hívila M.P. & Peruchi, Rogério S. & Lopes, Riuzuani M.B.P. & Rotella Junior, Paulo, 2024. "Briquetting process optimization of poultry litter and urban wood waste," Renewable Energy, Elsevier, vol. 222(C).
    16. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    17. Song, Xiaobing & Zhang, Shouyu & Wu, Yuanmo & Cao, Zhongyao, 2020. "Investigation on the properties of the bio-briquette fuel prepared from hydrothermal pretreated cotton stalk and wood sawdust," Renewable Energy, Elsevier, vol. 151(C), pages 184-191.
    18. Stachowicz, Paweł & Stolarski, Mariusz J., 2024. "Pellets from mixtures of short rotation coppice with forest-derived biomass: Production costs and energy intensity," Renewable Energy, Elsevier, vol. 225(C).
    19. Okey Francis Obi & Temitope Olumide Olugbade & Joseph Ifeolu Orisaleye & Ralf Pecenka, 2023. "Solid Biofuel Production from Biomass: Technologies, Challenges, and Opportunities for Its Commercial Production in Nigeria," Energies, MDPI, vol. 16(24), pages 1-22, December.
    20. Zygmunt Kowalski & Agnieszka Makara, 2024. "Processing Orchard Grass into Carbon Bio Pellets via Hydrothermal Carbonisation—A Case Study Analysis," Energies, MDPI, vol. 17(12), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:244:y:2025:i:c:s096014812500240x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.