IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v167y2021icp306-312.html
   My bibliography  Save this article

Effects of pressure densification on strength and properties of cassava waste briquettes

Author

Listed:
  • Granado, Marcos Paulo Patta
  • Suhogusoff, Yuri Valentinovich Machado
  • Santos, Luis Ricardo Oliveira
  • Yamaji, Fabio Minoru
  • De Conti, Andrea Cressoni

Abstract

Cassava waste has the potential to be used as an energy source. The aim of this study was to analyze the effects of pressure densification on the properties of cassava residue briquettes, especially on the strength of the briquettes. It was used three compaction pressures: 102, 153, and 204 MP A and three pressing hold times: without holding pressure time, 60s, and 120 s, to produce briquettes without heating and verify their formation concerning the compaction. The proximate analysis provided 72.50% to volatile, 13.10% to Fixed carbon, and 14.45% to ash; the higher heating value (HHV) was 17.12 MJ/kg. The cassava rhizome waste (bulk density) showed an energy density of 2.04 GJ/m3. With densification, it obtained an energy density of 15.7 GJ/m3, representing an increase of up to 7.7 times. We obtained higher durability (94,1%) for time pressing of 120s and pressure of 204 MP A. The briquette volumetric stabilization occurred 24 h after production, and we observed that the briquettes produced with a higher compaction pressure showed greater density and resistance. Cassava rhizome biomass showed good energy properties. The densification process can be an alternative to solving transportation, handling, and cassava rhizome residues.

Suggested Citation

  • Granado, Marcos Paulo Patta & Suhogusoff, Yuri Valentinovich Machado & Santos, Luis Ricardo Oliveira & Yamaji, Fabio Minoru & De Conti, Andrea Cressoni, 2021. "Effects of pressure densification on strength and properties of cassava waste briquettes," Renewable Energy, Elsevier, vol. 167(C), pages 306-312.
  • Handle: RePEc:eee:renene:v:167:y:2021:i:c:p:306-312
    DOI: 10.1016/j.renene.2020.11.087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120318371
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.11.087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    2. Zvicevičius, Egidijus & Raila, Algirdas & Čiplienė, Aušra & Černiauskienė, Živilė & Kadžiulienė, Žydrė & Tilvikienė, Vita, 2018. "Effects of moisture and pressure on densification process of raw material from Artemisia dubia Wall," Renewable Energy, Elsevier, vol. 119(C), pages 185-192.
    3. Bajwa, Dilpreet S. & Peterson, Tyler & Sharma, Neeta & Shojaeiarani, Jamileh & Bajwa, Sreekala G., 2018. "A review of densified solid biomass for energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 296-305.
    4. Zhang, Jing & Zheng, Decong & Wu, Kai & Zhang, Xiuquan, 2019. "The optimum conditions for preparing briquette made from millet bran using Generalized Distance Function," Renewable Energy, Elsevier, vol. 140(C), pages 692-703.
    5. Brand, Martha Andreia & Jacinto, Rodolfo Cardoso & Antunes, Rodrigo & da Cunha, Alexsandro Bayestorff, 2017. "Production of briquettes as a tool to optimize the use of waste from rice cultivation and industrial processing," Renewable Energy, Elsevier, vol. 111(C), pages 116-123.
    6. Lubwama, Michael & Yiga, Vianney Andrew, 2018. "Characteristics of briquettes developed from rice and coffee husks for domestic cooking applications in Uganda," Renewable Energy, Elsevier, vol. 118(C), pages 43-55.
    7. Veiga, João Paulo Soto & Valle, Teresa Losada & Feltran, José Carlos & Bizzo, Waldir Antonio, 2016. "Characterization and productivity of cassava waste and its use as an energy source," Renewable Energy, Elsevier, vol. 93(C), pages 691-699.
    8. Navalta, Carl John Louie G. & Banaag, Kristian Gregg C. & Raboy, Von Adrian O. & Go, Alchris W. & Cabatingan, Luis K. & Ju, Yi-Hsu, 2020. "Solid fuel from Co-briquetting of sugarcane bagasse and rice bran," Renewable Energy, Elsevier, vol. 147(P1), pages 1941-1958.
    9. Lubwama, Michael & Yiga, Vianney Andrew, 2017. "Development of groundnut shells and bagasse briquettes as sustainable fuel sources for domestic cooking applications in Uganda," Renewable Energy, Elsevier, vol. 111(C), pages 532-542.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Okey Francis Obi & Ralf Pecenka & Michael J. Clifford, 2022. "A Review of Biomass Briquette Binders and Quality Parameters," Energies, MDPI, vol. 15(7), pages 1-22, March.
    2. Imberti, Rodrigo Mazolini & Carvalho Padilha, Janine & da Silva Arrieche, Leonardo, 2024. "Production of sawdust and chicken fat briquettes as an alternative solid fuel," Renewable Energy, Elsevier, vol. 228(C).
    3. Lacrimioara Senila & Ioan Tenu & Petru Carlescu & Daniela Alexandra Scurtu & Eniko Kovacs & Marin Senila & Oana Cadar & Marius Roman & Diana Elena Dumitras & Cecilia Roman, 2022. "Characterization of Biobriquettes Produced from Vineyard Wastes as a Solid Biofuel Resource," Agriculture, MDPI, vol. 12(3), pages 1-13, February.
    4. Mohd Fuad, Muhammad Ariff Hanaffi & Hasan, Mohd Faizal & Chong, William Woei Fong & Ani, Farid Nasir & Ngadiman, Nor Hasrul Akhmal, 2024. "A novel oxidative microwave torrefaction approach for producing empty fruit bunch-starch binder briquettes as a potential biomass-based energy," Renewable Energy, Elsevier, vol. 228(C).
    5. Marreiro, Hívila M.P. & Peruchi, Rogério S. & Lopes, Riuzuani M.B.P. & Rotella Junior, Paulo, 2024. "Briquetting process optimization of poultry litter and urban wood waste," Renewable Energy, Elsevier, vol. 222(C).
    6. Grzegorz Łysiak & Ryszard Kulig & Alina Kowalczyk-Juśko, 2023. "Toward New Value-Added Products Made from Anaerobic Digestate: Part 2—Effect of Loading Level on the Densification of Solid Digestate," Sustainability, MDPI, vol. 15(9), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bill Vaneck Bot & Petros J. Axaopoulos & Evangelos I. Sakellariou & Olivier Thierry Sosso & Jean Gaston Tamba, 2023. "Economic Viability Investigation of Mixed-Biomass Briquettes Made from Agricultural Residues for Household Cooking Use," Energies, MDPI, vol. 16(18), pages 1-13, September.
    2. Okey Francis Obi & Ralf Pecenka & Michael J. Clifford, 2022. "A Review of Biomass Briquette Binders and Quality Parameters," Energies, MDPI, vol. 15(7), pages 1-22, March.
    3. Xin Zhang & Yun-Ze Li & Ao-Bing Wang & Li-Jun Gao & Hui-Juan Xu & Xian-Wen Ning, 2020. "The Development Strategies and Technology Roadmap of Bioenergy for a Typical Region: A Case Study in the Beijing-Tianjin-Hebei Region in China," Energies, MDPI, vol. 13(4), pages 1-25, February.
    4. Tianyou Chen & Honglei Jia & Shengwei Zhang & Xumin Sun & Yuqiu Song & Hongfang Yuan, 2020. "Optimization of Cold Pressing Process Parameters of Chopped Corn Straws for Fuel," Energies, MDPI, vol. 13(3), pages 1-21, February.
    5. Malico, Isabel & Nepomuceno Pereira, Ricardo & Gonçalves, Ana Cristina & Sousa, Adélia M.O., 2019. "Current status and future perspectives for energy production from solid biomass in the European industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 960-977.
    6. Yun, Huimin & Clift, Roland & Bi, Xiaotao, 2020. "Process simulation, techno-economic evaluation and market analysis of supply chains for torrefied wood pellets from British Columbia: Impacts of plant configuration and distance to market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    7. Kipngetich, P. & Kiplimo, R. & Tanui, J.K. & Chisale, P.C., 2022. "Optimization of combustion parameters of carbonized rice husk briquettes in a fixed bed using RSM technique," Renewable Energy, Elsevier, vol. 198(C), pages 61-74.
    8. Bot, Bill Vaneck & Axaopoulos, Petros J. & Sakellariou, Evangelos I. & Sosso, Olivier Thierry & Tamba, Jean Gaston, 2022. "Energetic and economic analysis of biomass briquettes production from agricultural residues," Applied Energy, Elsevier, vol. 321(C).
    9. Lubwama, Michael & Yiga, Vianney Andrew & Muhairwe, Frank & Kihedu, Joseph, 2020. "Physical and combustion properties of agricultural residue bio-char bio-composite briquettes as sustainable domestic energy sources," Renewable Energy, Elsevier, vol. 148(C), pages 1002-1016.
    10. Jezerska, Lucie & Sassmanova, Veronika & Prokes, Rostislav & Gelnar, Daniel, 2023. "The pelletization and torrefaction of coffee grounds, garden chaff and rapeseed straw," Renewable Energy, Elsevier, vol. 210(C), pages 346-354.
    11. Kang, Kang & Klinghoffer, Naomi B. & ElGhamrawy, Islam & Berruti, Franco, 2021. "Thermochemical conversion of agroforestry biomass and solid waste using decentralized and mobile systems for renewable energy and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    12. Sunday Yusuf Kpalo & Mohamad Faiz Zainuddin & Latifah Abd Manaf & Ahmad Muhaimin Roslan, 2020. "A Review of Technical and Economic Aspects of Biomass Briquetting," Sustainability, MDPI, vol. 12(11), pages 1-30, June.
    13. Abdulyekeen, Kabir Abogunde & Daud, Wan Mohd Ashri Wan & Patah, Muhamad Fazly Abdul, 2024. "Torrefaction of wood and garden wastes from municipal solid waste to enhanced solid fuel using helical screw rotation-induced fluidised bed reactor: Effect of particle size, helical screw speed and te," Energy, Elsevier, vol. 293(C).
    14. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Fan, Yuyang & Tippayawong, Nakorn & Wei, Guoqiang & Huang, Zhen & Zhao, Kun & Jiang, Liqun & Zheng, Anqing & Zhao, Zengli & Li, Haibin, 2020. "Minimizing tar formation whilst enhancing syngas production by integrating biomass torrefaction pretreatment with chemical looping gasification," Applied Energy, Elsevier, vol. 260(C).
    16. Patuzzi, Francesco & Basso, Daniele & Vakalis, Stergios & Antolini, Daniele & Piazzi, Stefano & Benedetti, Vittoria & Cordioli, Eleonora & Baratieri, Marco, 2021. "State-of-the-art of small-scale biomass gasification systems: An extensive and unique monitoring review," Energy, Elsevier, vol. 223(C).
    17. Silva, D.A.L. & Filleti, R.A.P. & Musule, R. & Matheus, T.T. & Freire, F., 2022. "A systematic review and life cycle assessment of biomass pellets and briquettes production in Latin America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    18. Leonel J. R. Nunes & João C. O. Matias, 2020. "Biomass Torrefaction as a Key Driver for the Sustainable Development and Decarbonization of Energy Production," Sustainability, MDPI, vol. 12(3), pages 1-9, January.
    19. Jaime Martín-Pascual & Joaquín Jódar & Miguel L. Rodríguez & Montserrat Zamorano, 2020. "Determination of the Optimal Operative Conditions for the Torrefaction of Olive Waste Biomass," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
    20. Ansari, Khursheed B. & Gaikar, Vilas G., 2019. "Investigating production of hydrocarbon rich bio-oil from grassy biomass using vacuum pyrolysis coupled with online deoxygenation of volatile products over metallic iron," Renewable Energy, Elsevier, vol. 130(C), pages 305-318.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:167:y:2021:i:c:p:306-312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.