IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v321y2022ics0306261922007620.html
   My bibliography  Save this article

Energetic and economic analysis of biomass briquettes production from agricultural residues

Author

Listed:
  • Bot, Bill Vaneck
  • Axaopoulos, Petros J.
  • Sakellariou, Evangelos I.
  • Sosso, Olivier Thierry
  • Tamba, Jean Gaston

Abstract

This paper aims to analyse the energy consumption and economic viability of biomass briquettes production from agricultural residues. The work focus on briquetting conversion of coconut shells, rattan waste, sugarcane bagasse and banana peels based on a small-scale production plant located in Cameroon. Balance energy shows that the useful energy, mainly consumed during the briquetting process, is mechanical and thermal energy. Rattan waste, coconut shells, sugarcane bagasse, and banana peels briquettes need 0.78 kWh/kg, 0.75 kWh/kg, 1.46 kWh/kg, and 2.60 kWh/kg of primary energy, respectively. Economic analysis was carried out of 20 years’ span. The manufacturing cost is comprised mainly by the labour cost of the employees, which stands for about the 30% of total expenses, following the expenses for the gasoil (10–16% of total expenses). Net Present Values for rattan waste, coconut shells, sugarcane bagasse, and banana peel briquetting systems were discovered to be 66,526€; 67,189€; −34,317€; and −44,932€, respectively. The economic viability of the briquette production is sensitive to briquette market price, discount rate and capital cost. In conclusion, briquettes production from crop residues could be economically benefited by adopting suitable strategies in Cameroon and in any developing country.

Suggested Citation

  • Bot, Bill Vaneck & Axaopoulos, Petros J. & Sakellariou, Evangelos I. & Sosso, Olivier Thierry & Tamba, Jean Gaston, 2022. "Energetic and economic analysis of biomass briquettes production from agricultural residues," Applied Energy, Elsevier, vol. 321(C).
  • Handle: RePEc:eee:appene:v:321:y:2022:i:c:s0306261922007620
    DOI: 10.1016/j.apenergy.2022.119430
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922007620
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119430?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Halder, P.K. & Paul, N. & Beg, M.R.A., 2014. "Assessment of biomass energy resources and related technologies practice in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 444-460.
    2. Esso, Loesse Jacques & Keho, Yaya, 2016. "Energy consumption, economic growth and carbon emissions: Cointegration and causality evidence from selected African countries," Energy, Elsevier, vol. 114(C), pages 492-497.
    3. Bilandzija, Nikola & Voca, Neven & Jelcic, Barbara & Jurisic, Vanja & Matin, Ana & Grubor, Mateja & Kricka, Tajana, 2018. "Evaluation of Croatian agricultural solid biomass energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 225-230.
    4. Hannu Suopajärvi & Timo Fabritius, 2013. "Towards More Sustainable Ironmaking—An Analysis of Energy Wood Availability in Finland and the Economics of Charcoal Production," Sustainability, MDPI, vol. 5(3), pages 1-20, March.
    5. Hu, Jianjun & Lei, Tingzhou & Wang, Zhiwei & Yan, Xiaoyu & Shi, Xinguang & Li, Zaifeng & He, Xiaofeng & Zhang, Quanguo, 2014. "Economic, environmental and social assessment of briquette fuel from agricultural residues in China – A study on flat die briquetting using corn stalk," Energy, Elsevier, vol. 64(C), pages 557-566.
    6. Kumar, Anil & Kumar, Nitin & Baredar, Prashant & Shukla, Ashish, 2015. "A review on biomass energy resources, potential, conversion and policy in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 530-539.
    7. Sahoo, Kamalakanta & Bilek, Edward & Bergman, Richard & Mani, Sudhagar, 2019. "Techno-economic analysis of producing solid biofuels and biochar from forest residues using portable systems," Applied Energy, Elsevier, vol. 235(C), pages 578-590.
    8. Srivastava, N.S.L. & Narnaware, S.L. & Makwana, J.P. & Singh, S.N. & Vahora, S., 2014. "Investigating the energy use of vegetable market waste by briquetting," Renewable Energy, Elsevier, vol. 68(C), pages 270-275.
    9. Lubwama, Michael & Yiga, Vianney Andrew, 2017. "Development of groundnut shells and bagasse briquettes as sustainable fuel sources for domestic cooking applications in Uganda," Renewable Energy, Elsevier, vol. 111(C), pages 532-542.
    10. Hakizimana, Jean de Dieu K. & Kim, Hyung-Taek, 2016. "Peat briquette as an alternative to cooking fuel: A techno-economic viability assessment in Rwanda," Energy, Elsevier, vol. 102(C), pages 453-464.
    11. Feng, Cheng & Yu, Xinxin & Tan, Hanqiu & Liu, Tian & Hu, Tianyu & Zhang, Zhuoyan & Qiu, Shi & Chen, Longjian, 2013. "The economic feasibility of a crop-residue densification plant: A case study for the city of Jinzhou in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 172-180.
    12. Sunday Yusuf Kpalo & Mohamad Faiz Zainuddin & Latifah Abd Manaf & Ahmad Muhaimin Roslan, 2020. "A Review of Technical and Economic Aspects of Biomass Briquetting," Sustainability, MDPI, vol. 12(11), pages 1-30, June.
    13. Stolarski, Mariusz J. & Szczukowski, Stefan & Tworkowski, Józef & Krzyżaniak, Michał & Gulczyński, Paweł & Mleczek, Mirosław, 2013. "Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass," Renewable Energy, Elsevier, vol. 57(C), pages 20-26.
    14. Lubwama, Michael & Yiga, Vianney Andrew, 2018. "Characteristics of briquettes developed from rice and coffee husks for domestic cooking applications in Uganda," Renewable Energy, Elsevier, vol. 118(C), pages 43-55.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahmoud Ragab & Adil O. Khadidos & Abdulrhman M. Alshareef & Khaled H. Alyoubi & Diaa Hamed & Alaa O. Khadidos, 2023. "Internet of Things Assisted Solid Biofuel Classification Using Sailfish Optimizer Hybrid Deep Learning Model for Smart Cities," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
    2. Okey Francis Obi & Temitope Olumide Olugbade & Joseph Ifeolu Orisaleye & Ralf Pecenka, 2023. "Solid Biofuel Production from Biomass: Technologies, Challenges, and Opportunities for Its Commercial Production in Nigeria," Energies, MDPI, vol. 16(24), pages 1-22, December.
    3. Sunday Yusuf Kpalo & Mohamad Faiz Zainuddin & Latifah Abd Manaf & Ahmad Muhaimin Roslan & Nik Nor Rahimah Nik Ab Rahim, 2022. "Techno-Economic Viability Assessment of a Household Scale Agricultural Residue Composite Briquette Project for Rural Communities in Nigeria," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
    4. Dominik Wilczyński & Krzysztof Talaśka & Dominik Wojtkowiak & Krzysztof Wałęsa & Szymon Wojciechowski, 2022. "Selection of the Electric Drive for the Wood Waste Compacting Unit," Energies, MDPI, vol. 15(20), pages 1-20, October.
    5. Bill Vaneck Bot & Petros J. Axaopoulos & Evangelos I. Sakellariou & Olivier Thierry Sosso & Jean Gaston Tamba, 2023. "Economic Viability Investigation of Mixed-Biomass Briquettes Made from Agricultural Residues for Household Cooking Use," Energies, MDPI, vol. 16(18), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sunday Yusuf Kpalo & Mohamad Faiz Zainuddin & Latifah Abd Manaf & Ahmad Muhaimin Roslan, 2020. "A Review of Technical and Economic Aspects of Biomass Briquetting," Sustainability, MDPI, vol. 12(11), pages 1-30, June.
    2. Sunday Yusuf Kpalo & Mohamad Faiz Zainuddin & Latifah Abd Manaf & Ahmad Muhaimin Roslan & Nik Nor Rahimah Nik Ab Rahim, 2022. "Techno-Economic Viability Assessment of a Household Scale Agricultural Residue Composite Briquette Project for Rural Communities in Nigeria," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
    3. Asamoah, Bernice & Nikiema, Josiane & Gebrezgabher, Solomie & Odonkor, Elsie & Njenga, M., 2016. "A review on production, marketing and use of fuel briquettes," IWMI Reports 257959, International Water Management Institute.
    4. Lubwama, Michael & Yiga, Vianney Andrew, 2018. "Characteristics of briquettes developed from rice and coffee husks for domestic cooking applications in Uganda," Renewable Energy, Elsevier, vol. 118(C), pages 43-55.
    5. Pavla Fajfrlíková & Anna Brunerová & Hynek Roubík, 2020. "Analyses of Waste Treatment in Rural Areas of East Java with the Possibility of Low-Pressure Briquetting Press Application," Sustainability, MDPI, vol. 12(19), pages 1-14, October.
    6. Wang, Zhiwei & Lei, Tingzhou & Chang, Xia & Shi, Xinguang & Xiao, Ju & Li, Zaifeng & He, Xiaofeng & Zhu, Jinling & Yang, Shuhua, 2015. "Optimization of a biomass briquette fuel system based on grey relational analysis and analytic hierarchy process: A study using cornstalks in China," Applied Energy, Elsevier, vol. 157(C), pages 523-532.
    7. Okey Francis Obi & Ralf Pecenka & Michael J. Clifford, 2022. "A Review of Biomass Briquette Binders and Quality Parameters," Energies, MDPI, vol. 15(7), pages 1-22, March.
    8. Lacrimioara Senila & Ioan Tenu & Petru Carlescu & Daniela Alexandra Scurtu & Eniko Kovacs & Marin Senila & Oana Cadar & Marius Roman & Diana Elena Dumitras & Cecilia Roman, 2022. "Characterization of Biobriquettes Produced from Vineyard Wastes as a Solid Biofuel Resource," Agriculture, MDPI, vol. 12(3), pages 1-13, February.
    9. Berhanu, Mesfin & Jabasingh, S. Anuradha & Kifile, Zebene, 2017. "Expanding sustenance in Ethiopia based on renewable energy resources – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1035-1045.
    10. Kipngetich, P. & Kiplimo, R. & Tanui, J.K. & Chisale, P.C., 2022. "Optimization of combustion parameters of carbonized rice husk briquettes in a fixed bed using RSM technique," Renewable Energy, Elsevier, vol. 198(C), pages 61-74.
    11. Lubwama, Michael & Yiga, Vianney Andrew & Muhairwe, Frank & Kihedu, Joseph, 2020. "Physical and combustion properties of agricultural residue bio-char bio-composite briquettes as sustainable domestic energy sources," Renewable Energy, Elsevier, vol. 148(C), pages 1002-1016.
    12. Christoforou, Elias & Kylili, Angeliki & Fokaides, Paris A., 2016. "Technical and economical evaluation of olive mills solid waste pellets," Renewable Energy, Elsevier, vol. 96(PA), pages 33-41.
    13. Sunday Yusuf Kpalo & Mohamad Faiz Zainuddin & Latifah Abd Manaf & Ahmad Muhaimin Roslan, 2020. "Production and Characterization of Hybrid Briquettes from Corncobs and Oil Palm Trunk Bark under a Low Pressure Densification Technique," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    14. Granado, Marcos Paulo Patta & Suhogusoff, Yuri Valentinovich Machado & Santos, Luis Ricardo Oliveira & Yamaji, Fabio Minoru & De Conti, Andrea Cressoni, 2021. "Effects of pressure densification on strength and properties of cassava waste briquettes," Renewable Energy, Elsevier, vol. 167(C), pages 306-312.
    15. Bill Vaneck Bot & Petros J. Axaopoulos & Evangelos I. Sakellariou & Olivier Thierry Sosso & Jean Gaston Tamba, 2023. "Economic Viability Investigation of Mixed-Biomass Briquettes Made from Agricultural Residues for Household Cooking Use," Energies, MDPI, vol. 16(18), pages 1-13, September.
    16. Gangil, Sandip, 2015. "Benefits of weakening in thermogravimetric signals of hemicellulose and lignin for producing briquettes from soybean crop residue," Energy, Elsevier, vol. 81(C), pages 729-737.
    17. Maria Angeles Garrido & Juan A. Conesa & Maria Dolores Garcia, 2017. "Characterization and Production of Fuel Briquettes Made from Biomass and Plastic Wastes," Energies, MDPI, vol. 10(7), pages 1-12, June.
    18. Al-Hamamre, Zayed & Saidan, Motasem & Hararah, Muhanned & Rawajfeh, Khaled & Alkhasawneh, Hussam E. & Al-Shannag, Mohammad, 2017. "Wastes and biomass materials as sustainable-renewable energy resources for Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 295-314.
    19. Naqvi, Salman Raza & Jamshaid, Sana & Naqvi, Muhammad & Farooq, Wasif & Niazi, Muhammad Bilal Khan & Aman, Zaeem & Zubair, Muhammad & Ali, Majid & Shahbaz, Muhammad & Inayat, Abrar & Afzal, Waheed, 2018. "Potential of biomass for bioenergy in Pakistan based on present case and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1247-1258.
    20. Farfan, Javier & Lohrmann, Alena & Breyer, Christian, 2019. "Integration of greenhouse agriculture to the energy infrastructure as an alimentary solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 368-377.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:321:y:2022:i:c:s0306261922007620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.