IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v5y2013i3p1188-1207d24373.html
   My bibliography  Save this article

Towards More Sustainable Ironmaking—An Analysis of Energy Wood Availability in Finland and the Economics of Charcoal Production

Author

Listed:
  • Hannu Suopajärvi

    (Laboratory of Process Metallurgy, University of Oulu, Oulu, PO BOX 4300, FI-90014, Finland)

  • Timo Fabritius

    (Laboratory of Process Metallurgy, University of Oulu, Oulu, PO BOX 4300, FI-90014, Finland)

Abstract

Replacement of fossil carbon by renewable biomass-based carbon is an effective measure to mitigate CO 2 emission intensity in the blast furnace ironmaking process. Depending on the substitution rate of fossil fuels, the required amount of biomass can be substantial. This raises questions about the availability of biomass for multiple uses. At the same time, the economic competitiveness of biomass-based fuels in ironmaking applications should also be a key consideration. In this assessment, availability of energy wood, i.e. , logging residues, small-diameter wood and stumps, in Finland is discussed. Since biomass must be submitted to a thermochemical process before use in a blast furnace, the paper describes the production chain, from biomass to charcoal, and economics related to each processing step. The economics of biomass-based reducing agents is compared to fossil-based ones by taking into account the effect of European Union Emissions Trading System (EU ETS). The assessment reveals that there would be sufficient amounts of energy wood available for current users as well as for ironmaking. At present, the economics of biomass-based reducing agents in ironmaking applications is unfavorable. High CO 2 emission allowance prices would be required to make such a scheme competitive against fossil-based reducing agents at current fuel prices.

Suggested Citation

  • Hannu Suopajärvi & Timo Fabritius, 2013. "Towards More Sustainable Ironmaking—An Analysis of Energy Wood Availability in Finland and the Economics of Charcoal Production," Sustainability, MDPI, vol. 5(3), pages 1-20, March.
  • Handle: RePEc:gam:jsusta:v:5:y:2013:i:3:p:1188-1207:d:24373
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/5/3/1188/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/5/3/1188/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    2. Yutao Lei & Xuan Zhang & Wenxiang Peng, 2022. "Can China’s Policy of Carbon Emissions Trading Optimize Manufacturing Structure? Evidence from Guangdong Based on a Synthetic Control Approach," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
    3. Bot, Bill Vaneck & Axaopoulos, Petros J. & Sakellariou, Evangelos I. & Sosso, Olivier Thierry & Tamba, Jean Gaston, 2022. "Energetic and economic analysis of biomass briquettes production from agricultural residues," Applied Energy, Elsevier, vol. 321(C).
    4. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    5. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "A review on torrefied biomass pellets as a sustainable alternative to coal in power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 153-160.
    6. Feuerbacher, Arndt & Siebold, Matthias & Chhetri, Ashit & Lippert, Christian & Sander, Klas, 2016. "Increasing forest utilization within Bhutan's forest conservation framework: The economic benefits of charcoal production," Forest Policy and Economics, Elsevier, vol. 73(C), pages 99-111.
    7. Nwachukwu, Chinedu Maureen & Wang, Chuan & Wetterlund, Elisabeth, 2021. "Exploring the role of forest biomass in abating fossil CO2 emissions in the iron and steel industry – The case of Sweden," Applied Energy, Elsevier, vol. 288(C).
    8. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    9. Yuchiao Lu & Hanmin Yang & Andrey V. Karasev & Chuan Wang & Pär G. Jönsson, 2022. "Applications of Hydrochar and Charcoal in the Iron and Steelmaking Industry—Part 1: Characterization of Carbonaceous Materials," Sustainability, MDPI, vol. 14(15), pages 1-27, August.
    10. Zakeri, Behnam & Syri, Sanna & Rinne, Samuli, 2015. "Higher renewable energy integration into the existing energy system of Finland – Is there any maximum limit?," Energy, Elsevier, vol. 92(P3), pages 244-259.
    11. Khanna, Nina & Fridley, David & Zhou, Nan & Karali, Nihan & Zhang, Jingjing & Feng, Wei, 2019. "Energy and CO2 implications of decarbonization strategies for China beyond efficiency: Modeling 2050 maximum renewable resources and accelerated electrification impacts," Applied Energy, Elsevier, vol. 242(C), pages 12-26.
    12. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2014. "Bioreducer use in Finnish blast furnace ironmaking – Analysis of CO2 emission reduction potential and mitigation cost," Applied Energy, Elsevier, vol. 124(C), pages 82-93.
    13. Mousa, Elsayed & Wang, Chuan & Riesbeck, Johan & Larsson, Mikael, 2016. "Biomass applications in iron and steel industry: An overview of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1247-1266.
    14. Toloue Farrokh, Najibeh & Suopajärvi, Hannu & Mattila, Olli & Umeki, Kentaro & Phounglamcheik, Aekjuthon & Romar, Henrik & Sulasalmi, Petri & Fabritius, Timo, 2018. "Slow pyrolysis of by-product lignin from wood-based ethanol production– A detailed analysis of the produced chars," Energy, Elsevier, vol. 164(C), pages 112-123.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:5:y:2013:i:3:p:1188-1207:d:24373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.