IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9399-d877551.html
   My bibliography  Save this article

Techno-Economic Viability Assessment of a Household Scale Agricultural Residue Composite Briquette Project for Rural Communities in Nigeria

Author

Listed:
  • Sunday Yusuf Kpalo

    (Faculty of Environmental Sciences, Nasarawa State University, Keffi 961101, Nigeria
    Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia)

  • Mohamad Faiz Zainuddin

    (Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia)

  • Latifah Abd Manaf

    (Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia)

  • Ahmad Muhaimin Roslan

    (Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia)

  • Nik Nor Rahimah Nik Ab Rahim

    (Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia)

Abstract

This study evaluated the technical and economic viability of a household scale composite briquette project. The objectives were to assess the quality of briquettes, estimate the cost of production, and determine the feasibility of the project. Briquettes were made from a blend of corncobs and the bark of oil palm trunk using a manual press. Production cost was estimated from the market price of commodities and specific economic indicators were used for feasibility analysis. Sensitivity analysis was performed on some essential input parameters that may affect the profitability of the project. Economic analysis revealed that the unit production cost of the briquettes was USD 0.16 per kg. The net present value was USD 6755.91 from the sale of briquettes at USD 0.26 per kg. An accounting profit is possible once briquette sales are above the break-even point of 7329.8 kg. Households could save about 25% from their per-capita expenditure on fuelwood when briquettes are utilized. Overall, the household briquette project is technically and economically viable in Nigeria. The significance of this study lies in the provision of a piece of baseline information to encourage local bio-energy development and serve as a guide for stakeholders in Nigeria with a potential interest in investing in briquette technology.

Suggested Citation

  • Sunday Yusuf Kpalo & Mohamad Faiz Zainuddin & Latifah Abd Manaf & Ahmad Muhaimin Roslan & Nik Nor Rahimah Nik Ab Rahim, 2022. "Techno-Economic Viability Assessment of a Household Scale Agricultural Residue Composite Briquette Project for Rural Communities in Nigeria," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9399-:d:877551
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9399/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9399/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sunday Yusuf Kpalo & Mohamad Faiz Zainuddin & Latifah Abd Manaf & Ahmad Muhaimin Roslan, 2020. "Production and Characterization of Hybrid Briquettes from Corncobs and Oil Palm Trunk Bark under a Low Pressure Densification Technique," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    2. Hu, Jianjun & Lei, Tingzhou & Wang, Zhiwei & Yan, Xiaoyu & Shi, Xinguang & Li, Zaifeng & He, Xiaofeng & Zhang, Quanguo, 2014. "Economic, environmental and social assessment of briquette fuel from agricultural residues in China – A study on flat die briquetting using corn stalk," Energy, Elsevier, vol. 64(C), pages 557-566.
    3. Sahoo, Kamalakanta & Bilek, Edward & Bergman, Richard & Mani, Sudhagar, 2019. "Techno-economic analysis of producing solid biofuels and biochar from forest residues using portable systems," Applied Energy, Elsevier, vol. 235(C), pages 578-590.
    4. Hakizimana, Jean de Dieu K. & Kim, Hyung-Taek, 2016. "Peat briquette as an alternative to cooking fuel: A techno-economic viability assessment in Rwanda," Energy, Elsevier, vol. 102(C), pages 453-464.
    5. Bot, Bill Vaneck & Axaopoulos, Petros J. & Sakellariou, Evangelos I. & Sosso, Olivier Thierry & Tamba, Jean Gaston, 2022. "Energetic and economic analysis of biomass briquettes production from agricultural residues," Applied Energy, Elsevier, vol. 321(C).
    6. Brendon R. Barnes, 2014. "Behavioural Change, Indoor Air Pollution and Child Respiratory Health in Developing Countries: A Review," IJERPH, MDPI, vol. 11(5), pages 1-12, April.
    7. Sunday Yusuf Kpalo & Mohamad Faiz Zainuddin & Latifah Abd Manaf & Ahmad Muhaimin Roslan, 2020. "A Review of Technical and Economic Aspects of Biomass Briquetting," Sustainability, MDPI, vol. 12(11), pages 1-30, June.
    8. Stolarski, Mariusz J. & Szczukowski, Stefan & Tworkowski, Józef & Krzyżaniak, Michał & Gulczyński, Paweł & Mleczek, Mirosław, 2013. "Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass," Renewable Energy, Elsevier, vol. 57(C), pages 20-26.
    9. Lubwama, Michael & Yiga, Vianney Andrew, 2018. "Characteristics of briquettes developed from rice and coffee husks for domestic cooking applications in Uganda," Renewable Energy, Elsevier, vol. 118(C), pages 43-55.
    10. Pradhan, Priyabrata & Gadkari, Prabodh & Mahajani, Sanjay M. & Arora, Amit, 2019. "A conceptual framework and techno-economic analysis of a pelletization-gasification based bioenergy system," Applied Energy, Elsevier, vol. 249(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bot, Bill Vaneck & Axaopoulos, Petros J. & Sakellariou, Evangelos I. & Sosso, Olivier Thierry & Tamba, Jean Gaston, 2022. "Energetic and economic analysis of biomass briquettes production from agricultural residues," Applied Energy, Elsevier, vol. 321(C).
    2. Sunday Yusuf Kpalo & Mohamad Faiz Zainuddin & Latifah Abd Manaf & Ahmad Muhaimin Roslan, 2020. "A Review of Technical and Economic Aspects of Biomass Briquetting," Sustainability, MDPI, vol. 12(11), pages 1-30, June.
    3. Grażyna Łaska & Ayodeji Raphael Ige, 2023. "A Review: Assessment of Domestic Solid Fuel Sources in Nigeria," Energies, MDPI, vol. 16(12), pages 1-20, June.
    4. Okey Francis Obi & Temitope Olumide Olugbade & Joseph Ifeolu Orisaleye & Ralf Pecenka, 2023. "Solid Biofuel Production from Biomass: Technologies, Challenges, and Opportunities for Its Commercial Production in Nigeria," Energies, MDPI, vol. 16(24), pages 1-22, December.
    5. Hívila M. P. Marreiro & Rogério S. Peruchi & Riuzuani M. B. P. Lopes & Silvia L. F. Andersen & Sayonara A. Eliziário & Paulo Rotella Junior, 2021. "Empirical Studies on Biomass Briquette Production: A Literature Review," Energies, MDPI, vol. 14(24), pages 1-40, December.
    6. Okey Francis Obi & Ralf Pecenka & Michael J. Clifford, 2022. "A Review of Biomass Briquette Binders and Quality Parameters," Energies, MDPI, vol. 15(7), pages 1-22, March.
    7. Okey Francis Obi & Ralf Pecenka, 2023. "Briquetting of Poplar Wood from Short Rotation Coppice—The Effects of Moisture Content and Hammer Mill Screen Size," Energies, MDPI, vol. 16(3), pages 1-14, February.
    8. Bill Vaneck Bot & Petros J. Axaopoulos & Evangelos I. Sakellariou & Olivier Thierry Sosso & Jean Gaston Tamba, 2023. "Economic Viability Investigation of Mixed-Biomass Briquettes Made from Agricultural Residues for Household Cooking Use," Energies, MDPI, vol. 16(18), pages 1-13, September.
    9. Gangil, Sandip, 2015. "Benefits of weakening in thermogravimetric signals of hemicellulose and lignin for producing briquettes from soybean crop residue," Energy, Elsevier, vol. 81(C), pages 729-737.
    10. Asamoah, Bernice & Nikiema, Josiane & Gebrezgabher, Solomie & Odonkor, Elsie & Njenga, M., 2016. "A review on production, marketing and use of fuel briquettes," IWMI Reports 257959, International Water Management Institute.
    11. Wang, Zhiwei & Lei, Tingzhou & Chang, Xia & Shi, Xinguang & Xiao, Ju & Li, Zaifeng & He, Xiaofeng & Zhu, Jinling & Yang, Shuhua, 2015. "Optimization of a biomass briquette fuel system based on grey relational analysis and analytic hierarchy process: A study using cornstalks in China," Applied Energy, Elsevier, vol. 157(C), pages 523-532.
    12. Shuren Chen & Yunfei Zhao & Zhong Tang & Hantao Ding & Zhan Su & Zhao Ding, 2022. "Structural Model of Straw Briquetting Machine with Vertical Ring Die and Optimization of Briquetting Performance," Agriculture, MDPI, vol. 12(5), pages 1-15, May.
    13. Song, Xiaobing & Zhang, Shouyu & Wu, Yuanmo & Cao, Zhongyao, 2020. "Investigation on the properties of the bio-briquette fuel prepared from hydrothermal pretreated cotton stalk and wood sawdust," Renewable Energy, Elsevier, vol. 151(C), pages 184-191.
    14. Jankowski, Krzysztof Józef & Dubis, Bogdan & Sokólski, Mateusz Mikołaj & Załuski, Dariusz & Bórawski, Piotr & Szempliński, Władysław, 2019. "Biomass yield and energy balance of Virginia fanpetals in different production technologies in north-eastern Poland," Energy, Elsevier, vol. 185(C), pages 612-623.
    15. Anita Konieczna & Kamila Mazur & Adam Koniuszy & Andrzej Gawlik & Igor Sikorski, 2022. "Thermal Energy and Exhaust Emissions of a Gasifier Stove Feeding Pine and Hemp Pellets," Energies, MDPI, vol. 15(24), pages 1-17, December.
    16. Dominik Wilczyński & Krzysztof Talaśka & Dominik Wojtkowiak & Krzysztof Wałęsa & Szymon Wojciechowski, 2022. "Selection of the Electric Drive for the Wood Waste Compacting Unit," Energies, MDPI, vol. 15(20), pages 1-20, October.
    17. Struhs, Ethan & Mirkouei, Amin & You, Yaqi & Mohajeri, Amir, 2020. "Techno-economic and environmental assessments for nutrient-rich biochar production from cattle manure: A case study in Idaho, USA," Applied Energy, Elsevier, vol. 279(C).
    18. Refiloe Masekela & Aneesa Vanker, 2020. "Lung Health in Children in Sub-Saharan Africa: Addressing the Need for Cleaner Air," IJERPH, MDPI, vol. 17(17), pages 1-13, August.
    19. Xiaoxian Zhang & Fang Ma, 2015. "Emergy Evaluation of Different Straw Reuse Technologies in Northeast China," Sustainability, MDPI, vol. 7(9), pages 1-18, August.
    20. Oluwaseyi Kayode Fadele & Temiloluwa Ojuolape Amusan & Ademola Olagoke Afolabi & Clement Adesoji Ogunlade, 2021. "Characterisation of briquettes from forest wastes: Optimisation approach," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 67(3), pages 138-147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9399-:d:877551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.