IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v198y2017icp312-319.html
   My bibliography  Save this article

Effect of polymer plastic binder on mechanical, storage and combustion characteristics of torrefied and pelletized herbaceous biomass

Author

Listed:
  • Emadi, Bagher
  • Iroba, Kingsley L.
  • Tabil, Lope G.

Abstract

Currently one of the main challenges of the wood pellet industry is the limitation of raw materials. The solution to this limitation can be either increasing the efficiency of the materials or finding new sources to replace them. To maintain the sustainability of global production and consumption, extra resources can be found in waste instead of natural resources. Plastic wastes may be considered as a replacement source due to their effect on environmental pollution which is caused by changing production and consumption patterns of the human population in addition to population increase. Linear low density polyethylene (LLDPE), one of the extractable plastics from municipal solid wastes (MSW) was investigated as an additive and binder for torrefied biomass pellets. Non-ground wheat and barley straws were torrefied at 250°C for 15min. The torrefied biomass was mixed with LLDPE as an additive at four levels (1, 3, 6 and 10%). The results showed that addition of 6% LLDPE to the biomass pellets led to a maximum increase in density by 1.8% for wheat and 1.7% for barley. Adding 10% LLDPE to the torrefied biomass pellets resulted in a 280% and 253% increase in tensile strength for wheat and barley pellets, respectively. Adding LLDPE from 1% up to 10% resulted in increasing higher heating values and a decreasing ash content for both torrefied wheat and barley straw pellets. The higher heating value (HHV) of the pellets at all levels of added LLDPE except 10% meet the current standard specifications of DIN 51731 for commercial pellets. The ash content of the torrefied barley pellets at all levels of LLDPE addition except at 1% were in agreement with the requirement of the Pellet Fuels Institute Standard Specification for Residential/Commercial Densified Fuel (⩽6.0%).

Suggested Citation

  • Emadi, Bagher & Iroba, Kingsley L. & Tabil, Lope G., 2017. "Effect of polymer plastic binder on mechanical, storage and combustion characteristics of torrefied and pelletized herbaceous biomass," Applied Energy, Elsevier, vol. 198(C), pages 312-319.
  • Handle: RePEc:eee:appene:v:198:y:2017:i:c:p:312-319
    DOI: 10.1016/j.apenergy.2016.12.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916317901
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.12.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Keng-Tung & Tsai, Chia-Ju & Chen, Chih-Shen & Chen, Hsiao-Wei, 2012. "The characteristics of torrefied microalgae," Applied Energy, Elsevier, vol. 100(C), pages 52-57.
    2. Agar, D. & Gil, J. & Sanchez, D. & Echeverria, I. & Wihersaari, M., 2015. "Torrefied versus conventional pellet production – A comparative study on energy and emission balance based on pilot-plant data and EU sustainability criteria," Applied Energy, Elsevier, vol. 138(C), pages 621-630.
    3. Chai, Li & Saffron, Christopher M., 2016. "Comparing pelletization and torrefaction depots: Optimization of depot capacity and biomass moisture to determine the minimum production cost," Applied Energy, Elsevier, vol. 163(C), pages 387-395.
    4. Liu, Tingting & McConkey, Brian & Huffman, Ted & Smith, Stephen & MacGregor, Bob & Yemshanov, Denys & Kulshreshtha, Suren, 2014. "Potential and impacts of renewable energy production from agricultural biomass in Canada," Applied Energy, Elsevier, vol. 130(C), pages 222-229.
    5. Lamers, Patrick & Junginger, Martin & Hamelinck, Carlo & Faaij, André, 2012. "Developments in international solid biofuel trade—An analysis of volumes, policies, and market factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3176-3199.
    6. Peng, Jianghong & Bi, Xiaotao T. & Lim, C. Jim & Peng, Hanchao & Kim, Chang Soo & Jia, Dening & Zuo, Haibin, 2015. "Sawdust as an effective binder for making torrefied pellets," Applied Energy, Elsevier, vol. 157(C), pages 491-498.
    7. Ghiasi, Bahman & Kumar, Linoj & Furubayashi, Takaaki & Lim, C. Jim & Bi, Xiaotao & Kim, Chang Soo & Sokhansanj, Shahab, 2014. "Densified biocoal from woodchips: Is it better to do torrefaction before or after densification?," Applied Energy, Elsevier, vol. 134(C), pages 133-142.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Kang, Kang & Zhu, Mingqiang & Sun, Guotao & Qiu, Ling & Guo, Xiaohui & Meda, Venkatesh & Sun, Runcang, 2018. "Codensification of Eucommia ulmoides Oliver stem with pyrolysis oil and char for solid biofuel: An optimization and characterization study," Applied Energy, Elsevier, vol. 223(C), pages 347-357.
    3. Yang, Wei & Zhu, Youjian & Cheng, Wei & Sang, Huiying & Xu, Hanshen & Yang, Haiping & Chen, Hanping, 2018. "Effect of minerals and binders on particulate matter emission from biomass pellets combustion," Applied Energy, Elsevier, vol. 215(C), pages 106-115.
    4. Jianbiao Liu & Xuya Jiang & Yanhao Yuan & Huanhuan Chen & Wenbin Zhang & Hongzhen Cai & Feng Gao, 2022. "Densification of Yak Manure Biofuel Pellets and Evaluation of Parameters: Effects on Properties," Energies, MDPI, vol. 15(5), pages 1-14, February.
    5. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    6. San Miguel, G. & Sánchez, F. & Pérez, A. & Velasco, L., 2022. "One-step torrefaction and densification of woody and herbaceous biomass feedstocks," Renewable Energy, Elsevier, vol. 195(C), pages 825-840.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yun, Huimin & Clift, Roland & Bi, Xiaotao, 2020. "Process simulation, techno-economic evaluation and market analysis of supply chains for torrefied wood pellets from British Columbia: Impacts of plant configuration and distance to market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    2. Manouchehrinejad, Maryam & Bilek, E.M. Ted & Mani, Sudhagar, 2021. "Techno-economic analysis of integrated torrefaction and pelletization systems to produce torrefied wood pellets," Renewable Energy, Elsevier, vol. 178(C), pages 483-493.
    3. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Julia Hansson & Roman Hackl, 2016. "The potential influence of sustainability criteria on the European Union pellets market—the example of Sweden," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(4), pages 413-429, July.
    5. Shui, Tao & Khatri, Vinay & Chae, Michael & Sokhansanj, Shahabaddine & Choi, Phillip & Bressler, David C., 2020. "Development of a torrefied wood pellet binder from the cross-linking between specified risk materials-derived peptides and epoxidized poly (vinyl alcohol)," Renewable Energy, Elsevier, vol. 162(C), pages 71-80.
    6. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    7. Doddapaneni, Tharaka Rama Krishna C. & Praveenkumar, Ramasamy & Tolvanen, Henrik & Rintala, Jukka & Konttinen, Jukka, 2018. "Techno-economic evaluation of integrating torrefaction with anaerobic digestion," Applied Energy, Elsevier, vol. 213(C), pages 272-284.
    8. James W. Butler & William Skrivan & Samira Lotfi, 2023. "Identification of Optimal Binders for Torrefied Biomass Pellets," Energies, MDPI, vol. 16(8), pages 1-23, April.
    9. Parkhurst, Kristen M. & Saffron, Christopher M. & Miller, Raymond O., 2016. "An energy analysis comparing biomass torrefaction in depots to wind with natural gas combustion for electricity generation," Applied Energy, Elsevier, vol. 179(C), pages 171-181.
    10. Johnston, Craig M.T. & van Kooten, G. Cornelis, 2015. "Economics of co-firing coal and biomass: An application to Western Canada," Energy Economics, Elsevier, vol. 48(C), pages 7-17.
    11. Sun, Minmin & Zhang, Jianliang & Li, Kejiang & Barati, Mansoor & Liu, Zhibin, 2022. "Co-gasification characteristics of coke blended with hydro-char and pyro-char from bamboo," Energy, Elsevier, vol. 241(C).
    12. Lu, Ke-Miao & Lee, Wen-Jhy & Chen, Wei-Hsin & Lin, Ta-Chang, 2013. "Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends," Applied Energy, Elsevier, vol. 105(C), pages 57-65.
    13. Ehrig, Rita & Behrendt, Frank, 2013. "Co-firing of imported wood pellets – An option to efficiently save CO2 emissions in Europe?," Energy Policy, Elsevier, vol. 59(C), pages 283-300.
    14. Hossam A. Gabbar & Muhammad Sajjad Ahmad, 2024. "Integrated Waste-to-Energy Process Optimization for Municipal Solid Waste," Energies, MDPI, vol. 17(2), pages 1-20, January.
    15. Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2016. "Forests in the Finnish low carbon scenarios," Journal of Forest Economics, Elsevier, vol. 23(C), pages 45-62.
    16. Agar, David A. & Rudolfsson, Magnus & Lavergne, Simon & Melkior, Thierry & Da Silva Perez, Denilson & Dupont, Capucine & Campargue, Matthieu & Kalén, Gunnar & Larsson, Sylvia H., 2021. "Pelleting torrefied biomass at pilot-scale – Quality and implications for co-firing," Renewable Energy, Elsevier, vol. 178(C), pages 766-774.
    17. Albiona Pestisha & Zoltán Gabnai & Aidana Chalgynbayeva & Péter Lengyel & Attila Bai, 2023. "On-Farm Renewable Energy Systems: A Systematic Review," Energies, MDPI, vol. 16(2), pages 1-25, January.
    18. Suh, Dong Hee, 2017. "Biofuel Substitution and Carbon Dioxide Emission: Implication for Biofuel Mandate," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 251888, Southern Agricultural Economics Association.
    19. Kuo, Po-Chih & Illathukandy, Biju & Wu, Wei & Chang, Jo-Shu, 2021. "Energy, exergy, and environmental analyses of renewable hydrogen production through plasma gasification of microalgal biomass," Energy, Elsevier, vol. 223(C).
    20. Barta-Rajnai, E. & Wang, L. & Sebestyén, Z. & Barta, Z. & Khalil, R. & Skreiberg, Ø. & Grønli, M. & Jakab, E. & Czégény, Z., 2017. "Comparative study on the thermal behavior of untreated and various torrefied bark, stem wood, and stump of Norway spruce," Applied Energy, Elsevier, vol. 204(C), pages 1043-1054.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:198:y:2017:i:c:p:312-319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.