IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v251y2022ics0360544222008532.html
   My bibliography  Save this article

Experimental study on K migration, ash fouling/slagging behaviors and CO2 emission during co-combustion of rice straw and coal gangue

Author

Listed:
  • Liu, Lang
  • Ren, Shan
  • Yang, Jian
  • Jiang, Donghai
  • Guo, Junjiang
  • Pu, Yubao
  • Meng, Xianpiao

Abstract

Co-combustion of biomass and coal gangue (CG) is a potential technique for using both resources. The alkali migration plays a key factor for reducing ash slagging and SO2 emission, but its mechanism unclear. Hence, the K migration in co-combustion of rice straw (RS) and CG was well studied in this work. The results indicated that the influence of CG addition on K migration is related to the CG blending ratio. For a CG blending ratio <40%, one hand the released SO2 reacted with KCl and KOH to form relatively stable K2SO4; On the other hand, KCl, KOH and K2SO4 interacted with mullite and quartz to form KAlSi3O8. For a CG blending ratio >40%, K mainly reacted with mullite and quartz to form KAlSi3O8. Therefore, co-combustion is expected to reduce SO2 emissions by up to 18.19% at a CG blending ratio of 30%. Furthermore, the ash fouling/slagging tendency decreased from 0.62 without CG to 0.26–0.47 with CG. Considering these reasons, we suggested a 20%–30% CG blending ratio as the optimum feedstock composition for the co-combustion of RS and CG, and the co-combustion could consume 0.17–0.23 kg/(kW·h) of CG and reduce 0.45–0.43 kg-CO2/(kW·h).

Suggested Citation

  • Liu, Lang & Ren, Shan & Yang, Jian & Jiang, Donghai & Guo, Junjiang & Pu, Yubao & Meng, Xianpiao, 2022. "Experimental study on K migration, ash fouling/slagging behaviors and CO2 emission during co-combustion of rice straw and coal gangue," Energy, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:energy:v:251:y:2022:i:c:s0360544222008532
    DOI: 10.1016/j.energy.2022.123950
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222008532
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123950?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tan, Zhongxin & Lagerkvist, Anders, 2011. "Phosphorus recovery from the biomass ash: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3588-3602.
    2. Xiao, Ruirui & Chen, Xueli & Wang, Fuchen & Yu, Guangsuo, 2011. "The physicochemical properties of different biomass ashes at different ashing temperature," Renewable Energy, Elsevier, vol. 36(1), pages 244-249.
    3. Zhenqi Hu & Qi Zhu & Jingjing Xu & Xue Zhang, 2020. "Effect of Bactericides on Control of Acidification Pollution and Spontaneous Combustion of Coal Gangue Dumps in China and Its Mechanism," Sustainability, MDPI, vol. 12(17), pages 1-10, August.
    4. Wang, Liang & Skreiberg, Øyvind & Becidan, Michael & Li, Hailong, 2016. "Investigation of rye straw ash sintering characteristics and the effect of additives," Applied Energy, Elsevier, vol. 162(C), pages 1195-1204.
    5. Tabakaev, Roman & Ibraeva, Kanipa & Kan, Victor & Dubinin, Yury & Rudmin, Maksim & Yazykov, Nikolay & Zavorin, Alexander, 2020. "The effect of co-combustion of waste from flour milling and highly mineralized peat on sintering of the ash residue," Energy, Elsevier, vol. 196(C).
    6. Yao, Xiwen & Zhou, Haodong & Xu, Kaili & Chen, Shoukun & Ge, Ji & Xu, Qingwei, 2020. "Systematic study on ash transformation behaviour and thermal kinetic characteristics during co-firing of biomass with high ratios of bituminous coal," Renewable Energy, Elsevier, vol. 147(P1), pages 1453-1468.
    7. Bi, Haobo & Wang, Chengxin & Lin, Qizhao & Jiang, Xuedan & Jiang, Chunlong & Bao, Lin, 2020. "Combustion behavior, kinetics, gas emission characteristics and artificial neural network modeling of coal gangue and biomass via TG-FTIR," Energy, Elsevier, vol. 213(C).
    8. Nguyen, Hoang Khoi & Moon, Ji Hong & Jo, Sung Ho & Park, Sung Jin & Bae, Dal Hee & Seo, Myung Won & Ra, Ho Won & Yoon, Sang-Jun & Yoon, Sung-Min & Lee, Jae Goo & Mun, Tae-Young & Song, Byungho, 2021. "Ash characteristics of oxy-biomass combustion in a circulating fluidized bed with kaolin addition," Energy, Elsevier, vol. 230(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yaqing & Ren, Xiaofang & Zhang, Yuanbo & Zhang, Yutao & Shi, Xueqiang & Ren, Shuaijing, 2024. "Study on the thermal reaction characteristics and kinetics of coal and coal gangue coexisting spontaneous combustion," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Sakiewicz, Piotr & Piotrowski, Krzysztof & Kalisz, Sylwester, 2020. "Neural network prediction of parameters of biomass ashes, reused within the circular economy frame," Renewable Energy, Elsevier, vol. 162(C), pages 743-753.
    3. Yao, Xiwen & Zheng, Yan & Zhou, Haodong & Xu, Kaili & Xu, Qingwei & Li, Li, 2020. "Effects of biomass blending, ashing temperature and potassium addition on ash sintering behaviour during co-firing of pine sawdust with a Chinese anthracite," Renewable Energy, Elsevier, vol. 147(P1), pages 2309-2320.
    4. Yao, Xiwen & Zhao, Zhicheng & Xu, Kaili & Zhou, Haodong, 2020. "Determination of ash forming characteristics and fouling/slagging behaviours during gasification of masson pine in a fixed-bed gasifier," Renewable Energy, Elsevier, vol. 160(C), pages 1420-1430.
    5. Zhao, Shuchun & Guo, Junheng & Dang, Xiuhu & Ai, Bingyan & Zhang, Minqing & Li, Wei & Zhang, Jinli, 2022. "Energy consumption, flow characteristics and energy-efficient design of cup-shape blade stirred tank reactors: Computational fluid dynamics and artificial neural network investigation," Energy, Elsevier, vol. 240(C).
    6. Yao, Xiwen & Zhao, Zhicheng & Li, Jishuo & Zhang, Bohan & Zhou, Haodong & Xu, Kaili, 2020. "Experimental investigation of physicochemical and slagging characteristics of inorganic constituents in ash residues from gasification of different herbaceous biomass," Energy, Elsevier, vol. 198(C).
    7. Wang, Qian & Han, Kuihua & Wang, Peifu & Li, Shijie & Zhang, Mingyang, 2020. "Influence of additive on ash and combustion characteristics during biomass combustion under O2/CO2 atmosphere," Energy, Elsevier, vol. 195(C).
    8. William Leoncio Carrasco-Chilón & Wuesley Yusmein Alvarez-García & Marieta E. Cervantes Peralta & Carlos Quilcate & Hector V. Vásquez, 2023. "Rye Production under Acid Soils and Drought Conditions: An Alternative for the Sustainability of High Andean Livestock Farming in Peru," Sustainability, MDPI, vol. 15(14), pages 1-12, July.
    9. Oladejo, Jumoke M. & Adegbite, Stephen & Pang, Chengheng & Liu, Hao & Lester, Edward & Wu, Tao, 2020. "In-situ monitoring of the transformation of ash upon heating and the prediction of ash fusion behaviour of coal/biomass blends," Energy, Elsevier, vol. 199(C).
    10. Miao, Hengyang & Wang, Zhiqing & Wang, Zhefan & Sun, Haochen & Li, Xiangyu & Liu, Zheyu & Dong, Libo & Zhao, Jiantao & Huang, Jiejie & Fang, Yitian, 2022. "Effects of Na2CO3/Na2SO4 on catalytic gasification reactivity and mineral structure of coal gangue," Energy, Elsevier, vol. 255(C).
    11. Xu, Jie & Wang, Ju & Du, Chunhua & Li, Shuaidan & Liu, Xia, 2020. "Understanding fusibility characteristics and flow properties of the biomass and biomass-coal ash samples," Renewable Energy, Elsevier, vol. 147(P1), pages 1352-1357.
    12. Dahou, T. & Defoort, F. & Khiari, B. & Labaki, M. & Dupont, C. & Jeguirim, M., 2021. "Role of inorganics on the biomass char gasification reactivity: A review involving reaction mechanisms and kinetics models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Ge, Lichao & Zhao, Can & Chen, Simo & Li, Qian & Zhou, Tianhong & Jiang, Han & Li, Xi & Wang, Yang & Xu, Chang, 2022. "An analysis of the carbonization process and volatile-release characteristics of coal-based activated carbon," Energy, Elsevier, vol. 257(C).
    14. Zhou, Chunguang & Rosén, Christer & Engvall, Klas, 2016. "Biomass oxygen/steam gasification in a pressurized bubbling fluidized bed: Agglomeration behavior," Applied Energy, Elsevier, vol. 172(C), pages 230-250.
    15. Tabakaev, Roman & Kahn, Victor & Dubinin, Yury & Rudmin, Maxim & Yazykov, Nikolay & Skugarov, Artem & Alekseenko, Eduard & Zavorin, Alexander & Preis, Sergei, 2022. "High-strength fuel pellets made of flour milling and coal slack wastes," Energy, Elsevier, vol. 243(C).
    16. Ziqiang Yang & Fenghai Li & Mingjie Ma & Xuefei Liu & Hongli Fan & Zhenzhu Li & Yong Wang & Yitian Fang, 2023. "Regulation Mechanism of Solid Waste on Ash Fusion Characteristics of Sorghum Straw under O 2 /CO 2 Atmosphere," Energies, MDPI, vol. 16(20), pages 1-17, October.
    17. Dai, Ying & Sun, Meng & Fang, Hua & Yao, Huicong & Chen, Jianbiao & Tan, Jinzhu & Mu, Lin & Zhu, Yuezhao, 2024. "Co-combustion of binary and ternary blends of industrial sludge, lignite and pine sawdust via thermogravimetric analysis: Thermal behaviors, interaction effects, kinetics evaluation, and artificial ne," Renewable Energy, Elsevier, vol. 220(C).
    18. Vershinina, Ksenia Yu & Dorokhov, Vadim V. & Romanov, Daniil S. & Strizhak, Pavel A., 2022. "Combustion stages of waste-derived blends burned as pellets, layers, and droplets of slurry," Energy, Elsevier, vol. 251(C).
    19. Xiangbing Gao & Bo Jia & Gen Li & Xiaojing Ma, 2022. "Calorific Value Forecasting of Coal Gangue with Hybrid Kernel Function–Support Vector Regression and Genetic Algorithm," Energies, MDPI, vol. 15(18), pages 1-15, September.
    20. Jiang, Chunlong & Zhou, Wenliang & Bi, Haobo & Ni, Zhanshi & Sun, Hao & Lin, Qizhao, 2022. "Co-pyrolysis of coal slime and cattle manure by TG–FTIR–MS and artificial neural network modeling: Pyrolysis behavior, kinetics, gas emission characteristics," Energy, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:251:y:2022:i:c:s0360544222008532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.