IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v199y2020ics0360544220304370.html
   My bibliography  Save this article

In-situ monitoring of the transformation of ash upon heating and the prediction of ash fusion behaviour of coal/biomass blends

Author

Listed:
  • Oladejo, Jumoke M.
  • Adegbite, Stephen
  • Pang, Chengheng
  • Liu, Hao
  • Lester, Edward
  • Wu, Tao

Abstract

In-situ monitoring of the impacts of biomass blending and temperature on the morphology of coal ash was conducted by using a scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS) coupled with a heating stage and an ash fusion analyser. It is found that the interactions between ash originated from different parent fuels affected the morphology of the ash samples derived from the blends and promoted the rapid disintegration and melting of the ash particles. This helps reveal the deformation mechanism and the decrease in ash fusion temperatures of the fuel blends. Results showed that slagging propensity was mitigated as a result of blending the coal with the AAEMs-rich biomass, which is illustrated by the ash fusibility index. Subsequently, a new prediction method based on the mineral composition of the coal and biomass was formulated to elucidate the trends observed in fusion temperature of the fuel blends. This method can be used as a tool to guide the selection of biomass to adjust fusion characteristics of fuel blends.

Suggested Citation

  • Oladejo, Jumoke M. & Adegbite, Stephen & Pang, Chengheng & Liu, Hao & Lester, Edward & Wu, Tao, 2020. "In-situ monitoring of the transformation of ash upon heating and the prediction of ash fusion behaviour of coal/biomass blends," Energy, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:energy:v:199:y:2020:i:c:s0360544220304370
    DOI: 10.1016/j.energy.2020.117330
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220304370
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117330?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Wu, Jheng-Syun, 2009. "An evaluation on rice husks and pulverized coal blends using a drop tube furnace and a thermogravimetric analyzer for application to a blast furnace," Energy, Elsevier, vol. 34(10), pages 1458-1466.
    2. Sahu, S.G. & Chakraborty, N. & Sarkar, P., 2014. "Coal–biomass co-combustion: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 575-586.
    3. Xiao, Ruirui & Chen, Xueli & Wang, Fuchen & Yu, Guangsuo, 2011. "The physicochemical properties of different biomass ashes at different ashing temperature," Renewable Energy, Elsevier, vol. 36(1), pages 244-249.
    4. Kazagic, A. & Smajevic, I., 2007. "Experimental investigation of ash behavior and emissions during combustion of Bosnian coal and biomass," Energy, Elsevier, vol. 32(10), pages 2006-2016.
    5. Luan, Chao & You, Changfu & Zhang, Dongke, 2014. "Composition and sintering characteristics of ashes from co-firing of coal and biomass in a laboratory-scale drop tube furnace," Energy, Elsevier, vol. 69(C), pages 562-570.
    6. Kopczyński, Marcin & Lasek, Janusz A. & Iluk, Andrzej & Zuwała, Jarosław, 2017. "The co-combustion of hard coal with raw and torrefied biomasses (willow (Salix viminalis), olive oil residue and waste wood from furniture manufacturing)," Energy, Elsevier, vol. 140(P1), pages 1316-1325.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Li, Fenghai & Yang, Ziqiang & Li, Yang & Han, Guopeng & Fan, Hongli & Liu, Xuefei & Xu, Meiling & Guo, Mingxi & Fang, Yitian, 2023. "The effects of Na2O/K2O flux on ash fusion characteristics for high silicon-aluminum coal in entrained-flow bed gasification," Energy, Elsevier, vol. 282(C).
    3. Hariana, & Putra, Hanafi Prida & Prabowo, & Hilmawan, Edi & Darmawan, Arif & Mochida, Keiichi & Aziz, Muhammad, 2023. "Theoretical and experimental investigation of ash-related problems during coal co-firing with different types of biomass in a pulverized coal-fired boiler," Energy, Elsevier, vol. 269(C).
    4. Li, Fenghai & Zhou, Meijie & zhao, Wei & Liu, Xuefei & Yang, Ziqiang & Fan, Hongli & Han, Guopeng & Li, Junguo & Xu, Meiling & Fang, Yitian, 2024. "Ash fusion behavior modification mechanisms of high-calcium coal by coal blending and its ash viscosity predication," Energy, Elsevier, vol. 288(C).
    5. Li, Fenghai & Zhao, Chaoyue & Fan, Hongli & Xu, Meiling & Guo, Qianqian & Li, Yang & Wu, Lishun & Wang, Tao & Fang, Yitian, 2022. "Ash fusion behaviors of sugarcane bagasse and its modification with sewage sludge addition," Energy, Elsevier, vol. 251(C).
    6. Adeleke, Adekunle A. & Ikubanni, Peter P. & Emmanuel, Stephen S. & Fajobi, Moses O. & Nwachukwu, Praise & Adesibikan, Ademidun A. & Odusote, Jamiu K. & Adeyemi, Emmanuel O. & Abioye, Oluwaseyi M. & Ok, 2024. "A comprehensive review on the similarity and disparity of torrefied biomass and coal properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    7. Reinmöller, Markus & Schreiner, Marcus & Laabs, Marcel & Scharm, Christoph & Yao, Zhitong & Guhl, Stefan & Neuroth, Manuela & Meyer, Bernd & Gräbner, Martin, 2023. "Formation and transformation of mineral phases in biomass ashes and evaluation of the feedstocks for application in high-temperature processes," Renewable Energy, Elsevier, vol. 210(C), pages 627-639.
    8. Ziqiang Yang & Fenghai Li & Mingjie Ma & Xuefei Liu & Hongli Fan & Zhenzhu Li & Yong Wang & Yitian Fang, 2023. "Regulation Mechanism of Solid Waste on Ash Fusion Characteristics of Sorghum Straw under O 2 /CO 2 Atmosphere," Energies, MDPI, vol. 16(20), pages 1-17, October.
    9. Yue Jiao & Lina Tian & Shu Yu & Xudong Song & Zhiliang Wu & Juntao Wei & Jie Xu, 2023. "AAEM Species Migration/Transformation during Co-Combustion of Carbonaceous Feedstocks and Synergy Behavior on Co-Combustion Reactivity: A Critical Review," Energies, MDPI, vol. 16(22), pages 1-17, November.
    10. Jiang, Jiahao & Tie, Yuan & Deng, Lei & Che, Defu, 2022. "Influence of water-washing pretreatment on ash fusibility of biomass," Renewable Energy, Elsevier, vol. 200(C), pages 125-135.
    11. Zhu, Hongqing & Liao, Qi & Hu, Lintao & Xie, Linhao & Qu, Baolin & Gao, Rongxiang, 2023. "Effect of removal of alkali and alkaline earth metals in cornstalk on slagging/fouling and co-combustion characteristics of cornstalk/coal blends for biomass applications," Renewable Energy, Elsevier, vol. 207(C), pages 275-285.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao, Runlong & Zhang, Zili & Zeng, Qinda & Mao, Yumin & He, Hongzhou & Mao, Xingzhou & Yang, Fan & Zhao, Yi, 2018. "Synergistic behaviors of anthracite and dried sawdust sludge during their co-combustion: Conversion ratio, micromorphology variation and constituents evolutions," Energy, Elsevier, vol. 153(C), pages 776-787.
    2. Oladejo, Jumoke M. & Adegbite, Stephen & Pang, Cheng Heng & Liu, Hao & Parvez, Ashak M. & Wu, Tao, 2017. "A novel index for the study of synergistic effects during the co-processing of coal and biomass," Applied Energy, Elsevier, vol. 188(C), pages 215-225.
    3. Tabakaev, Roman & Ibraeva, Kanipa & Kan, Victor & Dubinin, Yury & Rudmin, Maksim & Yazykov, Nikolay & Zavorin, Alexander, 2020. "The effect of co-combustion of waste from flour milling and highly mineralized peat on sintering of the ash residue," Energy, Elsevier, vol. 196(C).
    4. Hu, Wanhe & Liang, Fang & Xiang, Hongzhong & Zhang, Jian & Yang, Xiaomeng & Zhang, Tao & Mi, Bingbing & Liu, Zhijia, 2018. "Investigating co-firing characteristics of coal and masson pine," Renewable Energy, Elsevier, vol. 126(C), pages 563-572.
    5. Ko, Chun-Han & Chaiprapat, Sumate & Kim, Lee-Hyung & Hadi, Pejman & Hsu, Shu-Chien & Leu, Shao-Yuan, 2017. "Carbon sequestration potential via energy harvesting from agricultural biomass residues in Mekong River basin, Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1051-1062.
    6. Sahu, S.G. & Chakraborty, N. & Sarkar, P., 2014. "Coal–biomass co-combustion: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 575-586.
    7. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Li, Fenghai & Zhao, Chaoyue & Guo, Qianqian & Li, Yang & Fan, Hongli & Guo, Mingxi & Wu, Lishun & Huang, Jiejie & Fang, Yitian, 2020. "Exploration in ash-deposition (AD) behavior modification of low-rank coal by manure addition," Energy, Elsevier, vol. 208(C).
    9. Yi Zhang & Guanmin Zhang & Min Wei & Zhenqiang Gao & Maocheng Tian & Fang He, 2019. "Comparisons of Acid and Water Solubilities of Rice Straw Ash Together with Its Major Ash-Forming Elements at Different Ashing Temperatures: An Experimental Study," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    10. Tabet, F. & Gökalp, I., 2015. "Review on CFD based models for co-firing coal and biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1101-1114.
    11. Hillig, Débora Moraes & Pohlmann, Juliana Gonçalves & Manera, Christian & Perondi, Daniele & Pereira, Fernando Marcelo & Altafini, Carlos Roberto & Godinho, Marcelo, 2020. "Evaluation of the structural changes of a char produced by slow pyrolysis of biomass and of a high-ash coal during its combustion and their role in the reactivity and flue gas emissions," Energy, Elsevier, vol. 202(C).
    12. Karol Król & Dorota Nowak-Woźny, 2021. "Application of the Mechanical and Pressure Drop Tests to Determine the Sintering Temperature of Coal and Biomass Ash," Energies, MDPI, vol. 14(4), pages 1-14, February.
    13. Alphonsus, Ephrem Ryan & Abdullah, Mohammad Omar, 2016. "A review on the applications of programmable logic controllers (PLCs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1185-1205.
    14. Li, Fenghai & Liu, Quanrun & Li, Meng & Fang, Yitian, 2018. "Understanding fly-ash formation during fluidized-bed gasification of high-silicon-aluminum coal based on its characteristics," Energy, Elsevier, vol. 150(C), pages 142-152.
    15. Wang, Qian & Han, Kuihua & Wang, Peifu & Li, Shijie & Zhang, Mingyang, 2020. "Influence of additive on ash and combustion characteristics during biomass combustion under O2/CO2 atmosphere," Energy, Elsevier, vol. 195(C).
    16. Chen, Wei-Hsin & Chen, Chih-Jung & Hung, Chen-I & Shen, Cheng-Hsien & Hsu, Heng-Wen, 2013. "A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor," Applied Energy, Elsevier, vol. 112(C), pages 421-430.
    17. Jha, Gaurav & Soren, S., 2017. "Study on applicability of biomass in iron ore sintering process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 399-407.
    18. Long, Xiaofei & Li, Jianbo & Wang, Hongjian & Liang, Yintang & Lu, Xiaofeng & Zhang, Dongke, 2023. "The morphological and mineralogical characteristics and thermal conductivity of ash deposits in a 220 MW CFBB firing Zhundong lignite," Energy, Elsevier, vol. 263(PB).
    19. Xu, Jie & Wang, Ju & Du, Chunhua & Li, Shuaidan & Liu, Xia, 2020. "Understanding fusibility characteristics and flow properties of the biomass and biomass-coal ash samples," Renewable Energy, Elsevier, vol. 147(P1), pages 1352-1357.
    20. Sakiewicz, Piotr & Piotrowski, Krzysztof & Kalisz, Sylwester, 2020. "Neural network prediction of parameters of biomass ashes, reused within the circular economy frame," Renewable Energy, Elsevier, vol. 162(C), pages 743-753.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:199:y:2020:i:c:s0360544220304370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.