IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v15y2011i8p3588-3602.html
   My bibliography  Save this article

Phosphorus recovery from the biomass ash: A review

Author

Listed:
  • Tan, Zhongxin
  • Lagerkvist, Anders

Abstract

Biomass ash, generated during the thermal chemical conversion of biomass for energy production, is an industrial by-product which is often recognized as a solid waste, but there are some useful elements in the biomass ash such as phosphorus, etc. So through some technology and methods, the biomass ash can be transferred into a useful resource. The paper mainly includes the following aspects: biomass ash composition characteristics, biomass thermal chemical conversion for phosphorus and phosphorus recovery technology from biomass ash. Through these aspects literature review, not only the whole biomass ash characteristics was made clear, but also we think that the idea of phosphorus from biomass ash is feasible, especially for some high phosphorus ash such as sludge ash, meat and bone meal (MBM) ash, etc. So the review about phosphorus from the biomass ash is very important practical significance for biomass energy, biomass ash disposal and phosphorus resource.

Suggested Citation

  • Tan, Zhongxin & Lagerkvist, Anders, 2011. "Phosphorus recovery from the biomass ash: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3588-3602.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:8:p:3588-3602
    DOI: 10.1016/j.rser.2011.05.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211100219X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2011.05.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Finney, Karen N. & Sharifi, Vida N. & Swithenbank, Jim, 2009. "Combustion of spent mushroom compost and coal tailing pellets in a fluidised-bed," Renewable Energy, Elsevier, vol. 34(3), pages 860-868.
    2. Youssef, Mahmoud A. & Wahid, Seddik S. & Mohamed, Maher A. & Askalany, Ahmed A., 2009. "Experimental study on Egyptian biomass combustion in circulating fluidized bed," Applied Energy, Elsevier, vol. 86(12), pages 2644-2650, December.
    3. Vamvuka, D. & Pitharoulis, M. & Alevizos, G. & Repouskou, E. & Pentari, D., 2009. "Ash effects during combustion of lignite/biomass blends in fluidized bed," Renewable Energy, Elsevier, vol. 34(12), pages 2662-2671.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Qi, Jianhui & Li, Hui & Han, Kuihua & Zuo, Qi & Gao, Jie & Wang, Qian & Lu, Chunmei, 2016. "Influence of ammonium dihydrogen phosphate on potassium retention and ash melting characteristics during combustion of biomass," Energy, Elsevier, vol. 102(C), pages 244-251.
    3. Liu, Lang & Ren, Shan & Yang, Jian & Jiang, Donghai & Guo, Junjiang & Pu, Yubao & Meng, Xianpiao, 2022. "Experimental study on K migration, ash fouling/slagging behaviors and CO2 emission during co-combustion of rice straw and coal gangue," Energy, Elsevier, vol. 251(C).
    4. Prestipino, M. & Galvagno, A. & Karlström, O. & Brink, A., 2018. "Energy conversion of agricultural biomass char: Steam gasification kinetics," Energy, Elsevier, vol. 161(C), pages 1055-1063.
    5. Zygmunt Kowalski & Magdalena Muradin & Joanna Kulczycka & Agnieszka Makara, 2021. "Comparative Analysis of Meat Bone Meal and Meat Bone Combustion Using the Life Cycle Assessment Method," Energies, MDPI, vol. 14(11), pages 1-12, June.
    6. Thomas, Paul & Soren, Nirmala & Rumjit, Nelson Pynadathu & George James, Jake & Saravanakumar, M.P., 2017. "Biomass resources and potential of anaerobic digestion in Indian scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 718-730.
    7. Fonts, Isabel & Gea, Gloria & Azuara, Manuel & Ábrego, Javier & Arauzo, Jesús, 2012. "Sewage sludge pyrolysis for liquid production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2781-2805.
    8. Mutair A. Akanji & Munir Ahmad & Mohammad I. Al-Wabel & Abdullah S. F. Al-Farraj, 2022. "Soil Phosphorus Fractionation and Bio-Availability in a Calcareous Soil as Affected by Conocarpus Waste Biochar and Its Acidified Derivative," Agriculture, MDPI, vol. 12(12), pages 1-35, December.
    9. Oliveira, Verónica & Kirkelund, Gunvor M. & Horta, Carmo & Labrincha, João & Dias-Ferreira, Celia, 2019. "Improving the energy efficiency of an electrodialytic process to extract phosphorus from municipal solid waste digestate through different strategies," Applied Energy, Elsevier, vol. 247(C), pages 182-189.
    10. Marzieh Bagheri & Marcus Öhman & Elisabeth Wetterlund, 2022. "Techno-Economic Analysis of Scenarios on Energy and Phosphorus Recovery from Mono- and Co-Combustion of Municipal Sewage Sludge," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    11. Marzena Smol & Michał Preisner & Augusto Bianchini & Jessica Rossi & Ludwig Hermann & Tanja Schaaf & Jolita Kruopienė & Kastytis Pamakštys & Maris Klavins & Ruta Ozola-Davidane & Daina Kalnina & Elina, 2020. "Strategies for Sustainable and Circular Management of Phosphorus in the Baltic Sea Region: The Holistic Approach of the InPhos Project," Sustainability, MDPI, vol. 12(6), pages 1-21, March.
    12. Choudhary, Ankur & Kumar, Ashish & Kumar, Sudhir, 2020. "Techno-economic analysis, kinetics, global warming potential comparison and optimization of a pilot-scale unheated semi-continuous anaerobic reactor in a hilly area: For north Indian hilly states," Renewable Energy, Elsevier, vol. 155(C), pages 1181-1190.
    13. Raheem, Abdur & Hassan, Mohammad Yusri & Shakoor, Rabia, 2016. "Bioenergy from anaerobic digestion in Pakistan: Potential, development and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 264-275.
    14. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2016. "Biomass combustion systems: A review on the physical and chemical properties of the ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 235-242.
    15. Chojnacka, K. & Gorazda, K. & Witek-Krowiak, A. & Moustakas, K., 2019. "Recovery of fertilizer nutrients from materials - Contradictions, mistakes and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 485-498.
    16. Naqvi, Salman Raza & Jamshaid, Sana & Naqvi, Muhammad & Farooq, Wasif & Niazi, Muhammad Bilal Khan & Aman, Zaeem & Zubair, Muhammad & Ali, Majid & Shahbaz, Muhammad & Inayat, Abrar & Afzal, Waheed, 2018. "Potential of biomass for bioenergy in Pakistan based on present case and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1247-1258.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Xiwen & Zhao, Zhicheng & Li, Jishuo & Zhang, Bohan & Zhou, Haodong & Xu, Kaili, 2020. "Experimental investigation of physicochemical and slagging characteristics of inorganic constituents in ash residues from gasification of different herbaceous biomass," Energy, Elsevier, vol. 198(C).
    2. Feng, Ping & Li, Xiaoyang & Wang, Jinyu & Li, Jie & Wang, Huan & He, Lu, 2021. "The mixtures of bio-oil derived from different biomass and coal/char as biofuels: Combustion characteristics," Energy, Elsevier, vol. 224(C).
    3. Karakosta, Charikleia & Psarras, John, 2013. "Understanding CDM potential in the Mediterranean basin: A country assessment of Egypt and Morocco," Energy Policy, Elsevier, vol. 60(C), pages 827-839.
    4. Shi, Kaiqi & Oladejo, Jumoke Mojisola & Yan, Jiefeng & Wu, Tao, 2019. "Investigation on the interactions among lignocellulosic constituents and minerals of biomass and their influences on co-firing," Energy, Elsevier, vol. 179(C), pages 129-137.
    5. Jae-Hyun Park & Young-Chan Choi & Young-Joo Lee & Hyung-Taek Kim, 2020. "Characteristics of Miscanthus Fuel by Wet Torrefaction on Fuel Upgrading and Gas Emission Behavior," Energies, MDPI, vol. 13(10), pages 1-10, May.
    6. Duan, Feng & Liu, Jian & Chyang, Chien-Song & Hu, Chun-Hsuan & Tso, Jim, 2013. "Combustion behavior and pollutant emission characteristics of RDF (refuse derived fuel) and sawdust in a vortexing fluidized bed combustor," Energy, Elsevier, vol. 57(C), pages 421-426.
    7. Li, Chenlin & Aston, John E. & Lacey, Jeffrey A. & Thompson, Vicki S. & Thompson, David N., 2016. "Impact of feedstock quality and variation on biochemical and thermochemical conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 525-536.
    8. Arromdee, Porametr & Kuprianov, Vladimir I., 2012. "Combustion of peanut shells in a cone-shaped bubbling fluidized-bed combustor using alumina as the bed material," Applied Energy, Elsevier, vol. 97(C), pages 470-482.
    9. Akram, M. & Tan, C.K. & Garwood, D.R. & Fisher, M. & Gent, D.R. & Kaye, W.G., 2015. "Co-firing of pressed sugar beet pulp with coal in a laboratory-scale fluidised bed combustor," Applied Energy, Elsevier, vol. 139(C), pages 1-8.
    10. Kuprianov, Vladimir I. & Kaewklum, Rachadaporn & Sirisomboon, Kasama & Arromdee, Porametr & Chakritthakul, Songpol, 2010. "Combustion and emission characteristics of a swirling fluidized-bed combustor burning moisturized rice husk," Applied Energy, Elsevier, vol. 87(9), pages 2899-2906, September.
    11. Zhu, Hongqing & Liao, Qi & Hu, Lintao & Xie, Linhao & Qu, Baolin & Gao, Rongxiang, 2023. "Effect of removal of alkali and alkaline earth metals in cornstalk on slagging/fouling and co-combustion characteristics of cornstalk/coal blends for biomass applications," Renewable Energy, Elsevier, vol. 207(C), pages 275-285.
    12. Sae Byul Kang & Bong Suk Sim & Jong Jin Kim, 2017. "Volume and Mass Measurement of a Burning Wood Pellet by Image Processing," Energies, MDPI, vol. 10(5), pages 1-13, May.
    13. Ninduangdee, Pichet & Kuprianov, Vladimir I., 2016. "A study on combustion of oil palm empty fruit bunch in a fluidized bed using alternative bed materials: Performance, emissions, and time-domain changes in the bed condition," Applied Energy, Elsevier, vol. 176(C), pages 34-48.
    14. Yang, Jianfei & Feng, Zixing & Gao, Qi & Ni, Liangmeng & Hou, Yanmei & He, Yuyu & Liu, Zhijia, 2021. "Ash thermochemical behaviors of bamboo lignin from kraft pulping: Influence of washing process," Renewable Energy, Elsevier, vol. 174(C), pages 178-187.
    15. Kang, Tae-Jin & Namkung, Hueon & Xu, Li-Hua & Lee, Sihyun & Kim, Sangdo & Kwon, Hyok-Bo & Kim, Hyung-Taek, 2013. "The drying kinetics of Indonesian low rank coal (IBC) using a lab scale fixed-bed reactor and thermobalance to apply catalytic gasification process," Renewable Energy, Elsevier, vol. 54(C), pages 138-143.
    16. Vamvuka, Despina & Trikouvertis, Marios & Pentari, Despina & Alevizos, George, 2014. "Evaluation of ashes produced from fluidized bed combustion of residues from oranges' plantations and processing," Renewable Energy, Elsevier, vol. 72(C), pages 336-343.
    17. Said, N. & El-Shatoury, S.A. & Díaz, L.F. & Zamorano, M., 2013. "Quantitative appraisal of biomass resources and their energy potential in Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 84-91.
    18. Link, Siim & Yrjas, Patrik & Hupa, Leena, 2018. "Ash melting behaviour of wheat straw blends with wood and reed," Renewable Energy, Elsevier, vol. 124(C), pages 11-20.
    19. Aditi B. Khadilkar & Peter L. Rozelle & Sarma V. Pisupati, 2015. "Effect of Heterogeneity in Coal Ash Chemical Composition on the Onset of Conditions Favorable for Agglomeration in Fluid Beds," Energies, MDPI, vol. 8(11), pages 1-16, November.
    20. Zhang, Li-hui & Chyang, Chien-Song & Duan, Feng & Li, Pin-Wei & Chen, Sing-Yu, 2016. "Comparison of the thermal behaviors and pollutant emissions of pelletized bamboo combustion in a fluidized bed combustor at different secondary gas injection modes," Energy, Elsevier, vol. 116(P1), pages 306-316.

    More about this item

    Keywords

    Biomass; Ash; Phosphorus;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:8:p:3588-3602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.