IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i11p12329-12545d58250.html
   My bibliography  Save this article

Effect of Heterogeneity in Coal Ash Chemical Composition on the Onset of Conditions Favorable for Agglomeration in Fluid Beds

Author

Listed:
  • Aditi B. Khadilkar

    (John and Willie Leone Family, Department of Energy and Mineral Engineering, the Pennsylvania State University, University Park, PA 16802, USA
    The EMS Energy Institute, the Pennsylvania State University, University Park, PA 16802, USA)

  • Peter L. Rozelle

    (United States Department of Energy, Office of Fossil Energy, FE-221/Germantown Building, 1000 Independence Avenue, S.W., Washington, DC 20585, USA)

  • Sarma V. Pisupati

    (John and Willie Leone Family, Department of Energy and Mineral Engineering, the Pennsylvania State University, University Park, PA 16802, USA
    The EMS Energy Institute, the Pennsylvania State University, University Park, PA 16802, USA)

Abstract

Ash agglomeration issues that arise due to the sticking of slag-wetted, colliding particles have been creating operational difficulties and monetary losses for the fluidized bed combustion (FBC) industry. Difficulties have been experienced in the detection of slag-liquid at the low operating temperatures in fluidized bed combustors (FBCs) and predicting the agglomeration behavior of fuel. This study aims to study the effect of heterogeneity in ash composition on the detection of slag-liquid in FBCs. It quantifies the slag-liquid amounts at the particle-level, under oxidizing environments, by dividing the bulk fuel into density classes. FactSage ™ thermodynamic simulations of each of the particle classes, along with experimental validation of the trends with thermo-mechanical analysis (TMA) and high temperature X-ray diffraction (HT-XRD) were performed. The results obtained can be used to estimate the stickiness of particles in the development of ash agglomeration models based on particle collisions. The study of these particle classes shows that particle classes with specific minerals can form low temperature eutectics and lead to onset of slag-liquid formation at temperatures below those predicted by bulk analysis alone. Comparison of the differences in slag-liquid formation tendencies under reducing and oxidizing environments is also presented.

Suggested Citation

  • Aditi B. Khadilkar & Peter L. Rozelle & Sarma V. Pisupati, 2015. "Effect of Heterogeneity in Coal Ash Chemical Composition on the Onset of Conditions Favorable for Agglomeration in Fluid Beds," Energies, MDPI, vol. 8(11), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:11:p:12329-12545:d:58250
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/11/12329/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/11/12329/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vamvuka, D. & Pitharoulis, M. & Alevizos, G. & Repouskou, E. & Pentari, D., 2009. "Ash effects during combustion of lignite/biomass blends in fluidized bed," Renewable Energy, Elsevier, vol. 34(12), pages 2662-2671.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anand, Amrit & Kachhap, Anju & Gautam, Shalini, 2023. "Synergistic effect of coal and biomass gasification and organo-inorganic elemental impact on gasification performance and product gas," Energy, Elsevier, vol. 282(C).
    2. Kareemulla, Dudekula & Gusev, Sergey & Bhattacharya, Sankar & Mahajani, Sanjay M., 2024. "Entrained-flow pyrolysis and (co-)gasification characteristics of Indian high-ash coals," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Xiwen & Zhao, Zhicheng & Li, Jishuo & Zhang, Bohan & Zhou, Haodong & Xu, Kaili, 2020. "Experimental investigation of physicochemical and slagging characteristics of inorganic constituents in ash residues from gasification of different herbaceous biomass," Energy, Elsevier, vol. 198(C).
    2. Shi, Kaiqi & Oladejo, Jumoke Mojisola & Yan, Jiefeng & Wu, Tao, 2019. "Investigation on the interactions among lignocellulosic constituents and minerals of biomass and their influences on co-firing," Energy, Elsevier, vol. 179(C), pages 129-137.
    3. Li, Chenlin & Aston, John E. & Lacey, Jeffrey A. & Thompson, Vicki S. & Thompson, David N., 2016. "Impact of feedstock quality and variation on biochemical and thermochemical conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 525-536.
    4. Vamvuka, Despina & Trikouvertis, Marios & Pentari, Despina & Alevizos, George, 2014. "Evaluation of ashes produced from fluidized bed combustion of residues from oranges' plantations and processing," Renewable Energy, Elsevier, vol. 72(C), pages 336-343.
    5. Link, Siim & Yrjas, Patrik & Hupa, Leena, 2018. "Ash melting behaviour of wheat straw blends with wood and reed," Renewable Energy, Elsevier, vol. 124(C), pages 11-20.
    6. Feng, Ping & Li, Xiaoyang & Wang, Jinyu & Li, Jie & Wang, Huan & He, Lu, 2021. "The mixtures of bio-oil derived from different biomass and coal/char as biofuels: Combustion characteristics," Energy, Elsevier, vol. 224(C).
    7. Tan, Zhongxin & Lagerkvist, Anders, 2011. "Phosphorus recovery from the biomass ash: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3588-3602.
    8. Jae-Hyun Park & Young-Chan Choi & Young-Joo Lee & Hyung-Taek Kim, 2020. "Characteristics of Miscanthus Fuel by Wet Torrefaction on Fuel Upgrading and Gas Emission Behavior," Energies, MDPI, vol. 13(10), pages 1-10, May.
    9. Zhu, Hongqing & Liao, Qi & Hu, Lintao & Xie, Linhao & Qu, Baolin & Gao, Rongxiang, 2023. "Effect of removal of alkali and alkaline earth metals in cornstalk on slagging/fouling and co-combustion characteristics of cornstalk/coal blends for biomass applications," Renewable Energy, Elsevier, vol. 207(C), pages 275-285.
    10. Yang, Jianfei & Feng, Zixing & Gao, Qi & Ni, Liangmeng & Hou, Yanmei & He, Yuyu & Liu, Zhijia, 2021. "Ash thermochemical behaviors of bamboo lignin from kraft pulping: Influence of washing process," Renewable Energy, Elsevier, vol. 174(C), pages 178-187.
    11. Kang, Tae-Jin & Namkung, Hueon & Xu, Li-Hua & Lee, Sihyun & Kim, Sangdo & Kwon, Hyok-Bo & Kim, Hyung-Taek, 2013. "The drying kinetics of Indonesian low rank coal (IBC) using a lab scale fixed-bed reactor and thermobalance to apply catalytic gasification process," Renewable Energy, Elsevier, vol. 54(C), pages 138-143.
    12. Tian, Chunyan & Li, Baoming & Liu, Zhidan & Zhang, Yuanhui & Lu, Haifeng, 2014. "Hydrothermal liquefaction for algal biorefinery: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 933-950.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:11:p:12329-12545:d:58250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.