IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4742-d1172168.html
   My bibliography  Save this article

Sewage Sludge Gasification Process Optimization for Combined Heat and Power Generation

Author

Listed:
  • Alberto Carotenuto

    (Dipartimento di Ingegneria, Università degli Studi di Napoli “Parthenope”, 80143 Napoli, Italy)

  • Simona Di Fraia

    (Dipartimento di Ingegneria, Università degli Studi di Napoli “Parthenope”, 80143 Napoli, Italy)

  • Nicola Massarotti

    (Dipartimento di Ingegneria, Università degli Studi di Napoli “Parthenope”, 80143 Napoli, Italy)

  • Szymon Sobek

    (Department of Heating, Ventilation and Dust Removal Technology, Silesian University of Technology, Stanisława Konarskiego St. 20, 44100 Gliwice, Poland)

  • M. Rakib Uddin

    (Dipartimento di Ingegneria, Università degli Studi di Napoli “Parthenope”, 80143 Napoli, Italy)

  • Laura Vanoli

    (Dipartimento di Ingegneria, Università degli Studi di Napoli “Parthenope”, 80143 Napoli, Italy)

  • Sebastian Werle

    (Department of Thermal Technology, Silesian University of Technology, Konarskiego 22, 44100 Gliwice, Poland)

Abstract

This work aims to assess the effect of the operating parameters of the gasifying agent preheating temperature and equivalence ratio (ER) on the conversion of sewage sludge (SS) to syngas through gasification and combined heat and power (CHP) generation. A novel gasification model was simulated in Aspen Plus to represent a fixed-bed updraft gasifier to generate syngas from SS through an equilibrium approach restricted by temperature. The novelty of this work is that the model was developed by applying the gasifying agent preheating temperature as an operating variable instead of the gasification temperature. It was calibrated by using a set of experimental values and then validated by comparing the numerical results with the experimental outcomes related to nine different operating conditions of air preheating temperatures and ER. A good agreement between the simulation and experimental results was observed. The optimum gasification process parameters of the air preheating temperature and ER were predicted to be 150 °C and 0.2, respectively. The CHP generation potentiality of SS was assessed to be 2.54 kW/kg SS as dry solids (DS), of which 0.81 kW was electrical and the remainder was thermal power. The conversion of SS to CHP through the proposed treatment can reduce 0.59 kg CO₂/kg SS as DS emissions compared with that of natural gas combustion to generate a similar quantity of energy.

Suggested Citation

  • Alberto Carotenuto & Simona Di Fraia & Nicola Massarotti & Szymon Sobek & M. Rakib Uddin & Laura Vanoli & Sebastian Werle, 2023. "Sewage Sludge Gasification Process Optimization for Combined Heat and Power Generation," Energies, MDPI, vol. 16(12), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4742-:d:1172168
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4742/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4742/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Di Fraia, S. & Massarotti, N. & Vanoli, L. & Costa, M., 2016. "Thermo-economic analysis of a novel cogeneration system for sewage sludge treatment," Energy, Elsevier, vol. 115(P3), pages 1560-1571.
    2. Carotenuto, Alberto & Di Fraia, Simona & Massarotti, Nicola & Sobek, Szymon & Uddin, M. Rakib & Vanoli, Laura & Werle, Sebastian, 2023. "Predictive modeling for energy recovery from sewage sludge gasification," Energy, Elsevier, vol. 263(PB).
    3. Sebastian Werle, 2015. "Gasification of a Dried Sewage Sludge in a Laboratory Scale Fixed Bed Reactor," Energies, MDPI, vol. 8(8), pages 1-11, August.
    4. Longo, Stefano & d’Antoni, Benedetto Mirko & Bongards, Michael & Chaparro, Antonio & Cronrath, Andreas & Fatone, Francesco & Lema, Juan M. & Mauricio-Iglesias, Miguel & Soares, Ana & Hospido, Almudena, 2016. "Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement," Applied Energy, Elsevier, vol. 179(C), pages 1251-1268.
    5. Mauro Villarini & Vera Marcantonio & Andrea Colantoni & Enrico Bocci, 2019. "Sensitivity Analysis of Different Parameters on the Performance of a CHP Internal Combustion Engine System Fed by a Biomass Waste Gasifier," Energies, MDPI, vol. 12(4), pages 1-21, February.
    6. Jeong, Yong-Seong & Choi, Young-Kon & Park, Ki-Bum & Kim, Joo-Sik, 2019. "Air co-gasification of coal and dried sewage sludge in a two-stage gasifier: Effect of blending ratio on the producer gas composition and tar removal," Energy, Elsevier, vol. 185(C), pages 708-716.
    7. Elsner, Witold & Wysocki, Marian & Niegodajew, Paweł & Borecki, Roman, 2017. "Experimental and economic study of small-scale CHP installation equipped with downdraft gasifier and internal combustion engine," Applied Energy, Elsevier, vol. 202(C), pages 213-227.
    8. Vishwajeet & Halina Pawlak-Kruczek & Marcin Baranowski & Michał Czerep & Artur Chorążyczewski & Krystian Krochmalny & Michał Ostrycharczyk & Paweł Ziółkowski & Paweł Madejski & Tadeusz Mączka & Amit A, 2022. "Entrained Flow Plasma Gasification of Sewage Sludge–Proof-of-Concept and Fate of Inorganics," Energies, MDPI, vol. 15(5), pages 1-14, March.
    9. Simona Di Fraia & M. Rakib Uddin, 2022. "Energy Recovery from Waste Paper and Deinking Sludge to Support the Demand of the Paper Industry: A Numerical Analysis," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    10. Castillo Santiago, York & Martínez González, Aldemar & Venturini, Osvaldo José & Yepes Maya, Diego Mauricio, 2021. "Assessment of the energy recovery potential of oil sludge through gasification aiming electricity generation," Energy, Elsevier, vol. 215(PB).
    11. Elia Judith Martínez & Ana Sotres & Cristián B. Arenas & Daniel Blanco & Olegario Martínez & Xiomar Gómez, 2019. "Improving Anaerobic Digestion of Sewage Sludge by Hydrogen Addition: Analysis of Microbial Populations and Process Performance," Energies, MDPI, vol. 12(7), pages 1-15, March.
    12. Martínez González, Aldemar & Silva Lora, Electo Eduardo & Escobar Palacio, José Carlos, 2019. "Syngas production from oil sludge gasification and its potential use in power generation systems: An energy and exergy analysis," Energy, Elsevier, vol. 169(C), pages 1175-1190.
    13. Pala, Laxmi Prasad Rao & Wang, Qi & Kolb, Gunther & Hessel, Volker, 2017. "Steam gasification of biomass with subsequent syngas adjustment using shift reaction for syngas production: An Aspen Plus model," Renewable Energy, Elsevier, vol. 101(C), pages 484-492.
    14. Werle, Sebastian & Wilk, Ryszard K., 2010. "A review of methods for the thermal utilization of sewage sludge: The Polish perspective," Renewable Energy, Elsevier, vol. 35(9), pages 1914-1919.
    15. Londoño-Pulgarin, Diana & Cardona-Montoya, Giovanny & Restrepo, Juan C. & Muñoz-Leiva, Francisco, 2021. "Fossil or bioenergy? Global fuel market trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simona Di Fraia & M. Rakib Uddin, 2022. "Energy Recovery from Waste Paper and Deinking Sludge to Support the Demand of the Paper Industry: A Numerical Analysis," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    2. Carotenuto, Alberto & Di Fraia, Simona & Massarotti, Nicola & Sobek, Szymon & Uddin, M. Rakib & Vanoli, Laura & Werle, Sebastian, 2023. "Predictive modeling for energy recovery from sewage sludge gasification," Energy, Elsevier, vol. 263(PB).
    3. Ziółkowski, Paweł & Stasiak, Kamil & Amiri, Milad & Mikielewicz, Dariusz, 2023. "Negative carbon dioxide gas power plant integrated with gasification of sewage sludge," Energy, Elsevier, vol. 262(PB).
    4. Dinko Đurđević & Saša Žiković & Paolo Blecich, 2022. "Sustainable Sewage Sludge Management Technologies Selection Based on Techno-Economic-Environmental Criteria: Case Study of Croatia," Energies, MDPI, vol. 15(11), pages 1-23, May.
    5. Wilhelm Jan Tic & Joanna Guziałowska-Tic & Halina Pawlak-Kruczek & Eugeniusz Woźnikowski & Adam Zadorożny & Łukasz Niedźwiecki & Mateusz Wnukowski & Krystian Krochmalny & Michał Czerep & Michał Ostryc, 2018. "Novel Concept of an Installation for Sustainable Thermal Utilization of Sewage Sludge," Energies, MDPI, vol. 11(4), pages 1-17, March.
    6. M. Shahabuddin & Sankar Bhattacharya, 2021. "Co-Gasification Characteristics of Coal and Biomass Using CO 2 Reactant under Thermodynamic Equilibrium Modelling," Energies, MDPI, vol. 14(21), pages 1-12, November.
    7. Martínez González, Aldemar & Lesme Jaén, René & Silva Lora, Electo Eduardo, 2020. "Thermodynamic assessment of the integrated gasification-power plant operating in the sawmill industry: An energy and exergy analysis," Renewable Energy, Elsevier, vol. 147(P1), pages 1151-1163.
    8. María Pilar González-Vázquez & Fernando Rubiera & Covadonga Pevida & Daniel T. Pio & Luís A.C. Tarelho, 2021. "Thermodynamic Analysis of Biomass Gasification Using Aspen Plus: Comparison of Stoichiometric and Non-Stoichiometric Models," Energies, MDPI, vol. 14(1), pages 1-17, January.
    9. Castillo Santiago, York & Martínez González, Aldemar & Venturini, Osvaldo J. & Sphaier, Leandro A. & Ocampo Batlle, Eric A., 2022. "Energetic and environmental assessment of oil sludge use in a gasifier/gas microturbine system," Energy, Elsevier, vol. 244(PB).
    10. Vera Marcantonio & Enrico Bocci & Danilo Monarca, 2019. "Development of a Chemical Quasi-Equilibrium Model of Biomass Waste Gasification in a Fluidized-Bed Reactor by Using Aspen Plus," Energies, MDPI, vol. 13(1), pages 1-15, December.
    11. Ziółkowski, Paweł & Badur, Janusz & Pawlak- Kruczek, Halina & Stasiak, Kamil & Amiri, Milad & Niedzwiecki, Lukasz & Krochmalny, Krystian & Mularski, Jakub & Madejski, Paweł & Mikielewicz, Dariusz, 2022. "Mathematical modelling of gasification process of sewage sludge in reactor of negative CO2 emission power plant," Energy, Elsevier, vol. 244(PA).
    12. Wu, Zhen & Zhu, Pengfei & Yao, Jing & Zhang, Shengan & Ren, Jianwei & Yang, Fusheng & Zhang, Zaoxiao, 2020. "Combined biomass gasification, SOFC, IC engine, and waste heat recovery system for power and heat generation: Energy, exergy, exergoeconomic, environmental (4E) evaluations," Applied Energy, Elsevier, vol. 279(C).
    13. AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
    14. Oni, Babalola Aisosa & Sanni, Samuel Eshorame & Ikhazuangbe, Prosper Monday-Ohien & Ibegbu, Anayo Jerome, 2021. "Experimental investigation of steam-air gasification of Cymbopogon citratus using Ni/dolomite/CeO2/K2CO3 as catalyst in a dual stage reactor for syngas and hydrogen production," Energy, Elsevier, vol. 237(C).
    15. Katarzyna Zabielska-Adamska, 2019. "Sewage Sludge Bottom Ash Characteristics and Potential Application in Road Embankment," Sustainability, MDPI, vol. 12(1), pages 1-14, December.
    16. Andrea G. Capodaglio & Gustaf Olsson, 2019. "Energy Issues in Sustainable Urban Wastewater Management: Use, Demand Reduction and Recovery in the Urban Water Cycle," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    17. Liu, Zhongzhe & Singer, Simcha & Tong, Yiran & Kimbell, Lee & Anderson, Erik & Hughes, Matthew & Zitomer, Daniel & McNamara, Patrick, 2018. "Characteristics and applications of biochars derived from wastewater solids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 650-664.
    18. Geng, ZhiQiang & Dong, JunGen & Han, YongMing & Zhu, QunXiong, 2017. "Energy and environment efficiency analysis based on an improved environment DEA cross-model: Case study of complex chemical processes," Applied Energy, Elsevier, vol. 205(C), pages 465-476.
    19. Adam Masłoń & Joanna Czarnota & Paulina Szczyrba & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2024. "Assessment of Energy Self-Sufficiency of Wastewater Treatment Plants—A Case Study from Poland," Energies, MDPI, vol. 17(5), pages 1-19, March.
    20. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4742-:d:1172168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.