IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1310-d1607123.html
   My bibliography  Save this article

Generation Characteristics of Gas Products in Fluidized Bed Gasification of Wood Pellets Under Oxygen-Enriched Conditions and Their Effects on Methanol Synthesis

Author

Listed:
  • Xiangli Zuo

    (College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China)

  • Huawei Jiang

    (College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China)

  • Tianyu Gao

    (College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China)

  • Man Zhang

    (Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Hairui Yang

    (Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Tuo Zhou

    (Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

Abstract

Methanol synthesis can utilize the product gas from biomass gasification and the hydrogen generated from water electrolysis. Biomass gasification, as an upstream process, affects the subsequent hydrogen supplement amount and has a direct relationship with the methanol yield. Fluidized bed oxygen-enriched gasification has a particular advantage for biomass and is expected to utilize the remaining oxygen from water electrolysis. In this study, the effects of operating parameters, including the equivalence ratio ER , temperature T , oxygen percentage OP in oxygen-enriched air, steam-to-wood pellets mass ratio S / W , and fluidization velocity u g , as well as the choice of bed materials, on the volume fractions of the gas products and the gas yield from the fluidized bed oxygen-enriched gasification of wood pellets were investigated. The effects of the generation characteristics of gas products on the hydrogen supplement amount and the methanol yield were also analyzed. The results showed that the volume fraction of H 2 reached its peak values of 10.47% and 18.49% at an ER value of 0.28 and a u g value of 0.187 m/s, respectively. The methanol yield reached its peak value of 0.54 kg/kg at a u g value of 0.155 m/s. The volume fraction of H 2 increased from 6.13% to 11.74% with an increasing temperature from 650 °C to 850 °C, increased from 5.72% to 10.77% with an increasing OP value from 21% to 35%, and increased from 12.39% to 19.06% with an increasing S / W value from 0.16 to 0.38. The methanol yield could be improved by increasing the ER value, T value, OP value, or S / W value. When the bed materials were changed from quartz sands to dolomite granules, the H 2 volume fraction significantly increased and the hydrogen supplement amount required for methanol synthesis reduced.

Suggested Citation

  • Xiangli Zuo & Huawei Jiang & Tianyu Gao & Man Zhang & Hairui Yang & Tuo Zhou, 2025. "Generation Characteristics of Gas Products in Fluidized Bed Gasification of Wood Pellets Under Oxygen-Enriched Conditions and Their Effects on Methanol Synthesis," Energies, MDPI, vol. 18(5), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1310-:d:1607123
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1310/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1310/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pala, Laxmi Prasad Rao & Wang, Qi & Kolb, Gunther & Hessel, Volker, 2017. "Steam gasification of biomass with subsequent syngas adjustment using shift reaction for syngas production: An Aspen Plus model," Renewable Energy, Elsevier, vol. 101(C), pages 484-492.
    2. Na Gao & Kang Zhu & Shiwen Fang & Lisheng Deng & Yan Lin & Zhen Huang & Jun Li & Hongyu Huang, 2024. "A Numerical Simulation and Experimental Study of Fluidization Characteristics of a Bubbling Fluidized Bed in Biomass Gasification," Energies, MDPI, vol. 17(10), pages 1-13, May.
    3. Upadhyay, Darshit S. & Sakhiya, Anil Kumar & Panchal, Krunal & Patel, Amar H. & Patel, Rajesh N., 2019. "Effect of equivalence ratio on the performance of the downdraft gasifier – An experimental and modelling approach," Energy, Elsevier, vol. 168(C), pages 833-846.
    4. Li, Chengjiang & Jia, Tingwen & Wang, Honglei & Wang, Xiaolin & Negnevitsky, Michael & Hu, Yu-jie & Zhao, Gang & Wang, Liang, 2023. "Assessing the prospect of deploying green methanol vehicles in China from energy, environmental and economic perspectives," Energy, Elsevier, vol. 263(PE).
    5. Anam Adil & Brijesh Prasad & Lakshminarayana Rao, 2024. "Methanol generation from bio-syngas: experimental analysis and modeling studies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 21503-21527, August.
    6. Pang, Yunji & Yang, Chen & Wu, Yuting & Chen, Yisheng & Li, Huan, 2022. "Study on counter-flow steam gasification characteristics of biochar with Fe2O3/CaO in-situ catalysis in fixed bed," Applied Energy, Elsevier, vol. 326(C).
    7. Im-orb, Karittha & Arpornwichanop, Amornchai, 2020. "Process and sustainability analyses of the integrated biomass pyrolysis, gasification, and methanol synthesis process for methanol production," Energy, Elsevier, vol. 193(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin, Yu & Xing, Xueli & Li, Xiang & Hong, Hui, 2024. "A biomass–solar hybrid gasification system by solar pyrolysis and PV– Solid oxide electrolysis cell for sustainable fuel production," Applied Energy, Elsevier, vol. 356(C).
    2. Kakati, Ujjiban & Sakhiya, Anil Kumar & Baghel, Paramjeet & Trada, Akshit & Mahapatra, Sadhan & Upadhyay, Darshit & Kaushal, Priyanka, 2022. "Sustainable utilization of bamboo through air-steam gasification in downdraft gasifier: Experimental and simulation approach," Energy, Elsevier, vol. 252(C).
    3. Xu, Wenwu & Zhang, Jifu & Wu, Qiming & Wang, Yangyang & Zhao, Wenxuan & Zhu, Zhaoyou & Wang, Yinglong & Cui, Peizhe, 2024. "Energy, exergy and economic (3E) analyses of a novel DME-power polygeneration system with CO2 capture based on biomass gasification," Applied Energy, Elsevier, vol. 374(C).
    4. AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
    5. Oni, Babalola Aisosa & Sanni, Samuel Eshorame & Ikhazuangbe, Prosper Monday-Ohien & Ibegbu, Anayo Jerome, 2021. "Experimental investigation of steam-air gasification of Cymbopogon citratus using Ni/dolomite/CeO2/K2CO3 as catalyst in a dual stage reactor for syngas and hydrogen production," Energy, Elsevier, vol. 237(C).
    6. Donatella Barisano & Giuseppe Canneto & Francesco Nanna & Antonio Villone & Emanuele Fanelli & Cesare Freda & Massimiliano Grieco & Andrea Lotierzo & Giacinto Cornacchia & Giacobbe Braccio & Vera Marc, 2022. "Investigation of an Intensified Thermo-Chemical Experimental Set-Up for Hydrogen Production from Biomass: Gasification Process Integrated to a Portable Purification System—Part II," Energies, MDPI, vol. 15(13), pages 1-16, June.
    7. Mohd Zeeshan & Rohan R. Pande & Purnanand V. Bhale, 2024. "A modeling study for the gasification of refuse-derived fuel as an alternative to waste disposal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 23985-24008, September.
    8. Stolecka, Katarzyna & Rusin, Andrzej, 2020. "Analysis of hazards related to syngas production and transport," Renewable Energy, Elsevier, vol. 146(C), pages 2535-2555.
    9. Patuzzi, Francesco & Basso, Daniele & Vakalis, Stergios & Antolini, Daniele & Piazzi, Stefano & Benedetti, Vittoria & Cordioli, Eleonora & Baratieri, Marco, 2021. "State-of-the-art of small-scale biomass gasification systems: An extensive and unique monitoring review," Energy, Elsevier, vol. 223(C).
    10. Yue, Tingyi & Wang, Honglei & Li, Chengjiang & Hu, Yu-jie, 2024. "Optimization strategies for green power and certificate trading in China considering seasonality: An evolutionary game-based system dynamics," Energy, Elsevier, vol. 311(C).
    11. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    12. Simona Di Fraia & M. Rakib Uddin, 2022. "Energy Recovery from Waste Paper and Deinking Sludge to Support the Demand of the Paper Industry: A Numerical Analysis," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    13. Šuhaj, Patrik & Husár, Jakub & Haydary, Juma & Annus, Július, 2022. "Experimental verification of a pilot pyrolysis/split product gasification (PSPG) unit," Energy, Elsevier, vol. 244(PA).
    14. Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues," Energies, MDPI, vol. 13(17), pages 1-12, August.
    15. Im-orb, Karittha & Piroonlerkgul, Pakorn, 2023. "Sustainability analysis of the bio-dimethyl ether (bio-DME) production via integrated biomass gasification and direct DME Synthesis Process," Renewable Energy, Elsevier, vol. 208(C), pages 324-330.
    16. Alberto Carotenuto & Simona Di Fraia & Nicola Massarotti & Szymon Sobek & M. Rakib Uddin & Laura Vanoli & Sebastian Werle, 2023. "Sewage Sludge Gasification Process Optimization for Combined Heat and Power Generation," Energies, MDPI, vol. 16(12), pages 1-22, June.
    17. xu, Guiying & Qian, Haifeng & Zhang, Qi & R Alsenani, Theyab & Bouzgarrou, Souhail & Alturise, Fahad, 2024. "Integration of biomass gasification and O2/H2 separation membranes for H2 production/separation with inherent CO2 capture: Techno-economic evaluation and artificial neural network based multi-objectiv," Renewable Energy, Elsevier, vol. 224(C).
    18. Ziółkowski, Paweł & Stasiak, Kamil & Amiri, Milad & Mikielewicz, Dariusz, 2023. "Negative carbon dioxide gas power plant integrated with gasification of sewage sludge," Energy, Elsevier, vol. 262(PB).
    19. Zhou, Jianzhao & Liu, Chaoshuo & Ren, Jingzheng & He, Chang, 2024. "Targeting carbon-neutral waste reduction: Novel process design, modelling and optimization for converting medical waste into hydrogen," Energy, Elsevier, vol. 310(C).
    20. Wu, Tianyi & Wang, Junfeng & Zhang, Wei & Zuo, Lei & Xu, Haojie & Li, Bin, 2023. "Plasma bubble characteristics and hydrogen production performance of methanol decomposition by liquid phase discharge," Energy, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1310-:d:1607123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.