IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v206y2020ics0360544220311798.html
   My bibliography  Save this article

Comparative study of a bottoming SRC and ORC for Joule–Brayton cycle cooling modular HTR exergy losses, fluid-flow machinery main dimensions, and partial loads

Author

Listed:
  • Kowalczyk, Tomasz
  • Badur, Janusz
  • Ziółkowski, Paweł

Abstract

Energy conversion efficiency increase in power plants with high-temperature gas-cooled reactors via implementation of the bottoming cycle was investigated under nominal and minimal thermal load of a high-temperature reactor (HTR). Heat transfer surface area and turbine outlet volumetric flow rate in bottoming cycles was also investigated. Water and two low-boiling point working fluids (ammonia and ethanol) were analyzed. Analyzed thermodynamic cycles consisted of a closed Joule-Brayton cycle with helium as working medium, which was investigated in configurations with heat regeneration, compressor intercoolers, and in a simple design. Organic versus steam Rankine cycles were compared; low-boiling point fluids under supercritical conditions in some configurations provide higher cycle energy efficiency than the gas-steam cycle. Volumetric flow rates in the last turbine stages were reduced against the steam turbine to 38% and 0.8% with ethanol and ammonia, respectively. The steam Rankine cycle configuration provided the smallest heat transfer surface increase compared with the base cycle.

Suggested Citation

  • Kowalczyk, Tomasz & Badur, Janusz & Ziółkowski, Paweł, 2020. "Comparative study of a bottoming SRC and ORC for Joule–Brayton cycle cooling modular HTR exergy losses, fluid-flow machinery main dimensions, and partial loads," Energy, Elsevier, vol. 206(C).
  • Handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220311798
    DOI: 10.1016/j.energy.2020.118072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220311798
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ziółkowski, Paweł & Badur, Janusz & Ziółkowski, Piotr Józef, 2019. "An energetic analysis of a gas turbine with regenerative heating using turbine extraction at intermediate pressure - Brayton cycle advanced according to Szewalski's idea," Energy, Elsevier, vol. 185(C), pages 763-786.
    2. Mikielewicz, Dariusz & Wajs, Jan & Ziółkowski, Paweł & Mikielewicz, Jarosław, 2016. "Utilisation of waste heat from the power plant by use of the ORC aided with bleed steam and extra source of heat," Energy, Elsevier, vol. 97(C), pages 11-19.
    3. Stanek, Wojciech & Czarnowska, Lucyna & Pikoń, Krzysztof & Bogacka, Magdalena, 2015. "Thermo-ecological cost of hard coal with inclusion of the whole life cycle chain," Energy, Elsevier, vol. 92(P3), pages 341-348.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Ziółkowski & Marta Drosińska-Komor & Jerzy Głuch & Łukasz Breńkacz, 2023. "Review of Methods for Diagnosing the Degradation Process in Power Units Cooperating with Renewable Energy Sources Using Artificial Intelligence," Energies, MDPI, vol. 16(17), pages 1-28, August.
    2. Paweł Ziółkowski & Stanisław Głuch & Piotr Józef Ziółkowski & Janusz Badur, 2022. "Compact High Efficiency and Zero-Emission Gas-Fired Power Plant with Oxy-Combustion and Carbon Capture," Energies, MDPI, vol. 15(7), pages 1-39, April.
    3. Hyrzyński, Rafał & Ziółkowski, Paweł & Gotzman, Sylwia & Kraszewski, Bartosz & Ochrymiuk, Tomasz & Badur, Janusz, 2021. "Comprehensive thermodynamic analysis of the CAES system coupled with the underground thermal energy storage taking into account global, central and local level of energy conversion," Renewable Energy, Elsevier, vol. 169(C), pages 379-403.
    4. Kruk-Gotzman, Sylwia & Ziółkowski, Paweł & Iliev, Iliya & Negreanu, Gabriel-Paul & Badur, Janusz, 2023. "Techno-economic evaluation of combined cycle gas turbine and a diabatic compressed air energy storage integration concept," Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paweł Ziółkowski & Marta Drosińska-Komor & Jerzy Głuch & Łukasz Breńkacz, 2023. "Review of Methods for Diagnosing the Degradation Process in Power Units Cooperating with Renewable Energy Sources Using Artificial Intelligence," Energies, MDPI, vol. 16(17), pages 1-28, August.
    2. Paweł Ziółkowski & Paweł Madejski & Milad Amiri & Tomasz Kuś & Kamil Stasiak & Navaneethan Subramanian & Halina Pawlak-Kruczek & Janusz Badur & Łukasz Niedźwiecki & Dariusz Mikielewicz, 2021. "Thermodynamic Analysis of Negative CO 2 Emission Power Plant Using Aspen Plus, Aspen Hysys, and Ebsilon Software," Energies, MDPI, vol. 14(19), pages 1-27, October.
    3. Stanek, Wojciech & Czarnowska, Lucyna, 2018. "Thermo-ecological cost – Szargut's proposal on exergy and ecology connection," Energy, Elsevier, vol. 165(PB), pages 1050-1059.
    4. Kardaś, Dariusz & Polesek-Karczewska, Sylwia & Turzyński, Tomasz & Wardach-Święcicka, Izabela & Hercel, Paulina & Szymborski, Jakub & Heda, Łukasz, 2023. "Thermal performance enhancement of a red-hot air furnace for a micro-scale externally fired gas turbine system," Energy, Elsevier, vol. 282(C).
    5. Mikielewicz, Dariusz & Mikielewicz, Jarosław, 2022. "Analysis of Organic Rankine Cycle efficiency and vapor generator heat transfer surface in function of the reduced pressure," Energy, Elsevier, vol. 261(PB).
    6. Hyrzyński, Rafał & Ziółkowski, Paweł & Gotzman, Sylwia & Kraszewski, Bartosz & Ochrymiuk, Tomasz & Badur, Janusz, 2021. "Comprehensive thermodynamic analysis of the CAES system coupled with the underground thermal energy storage taking into account global, central and local level of energy conversion," Renewable Energy, Elsevier, vol. 169(C), pages 379-403.
    7. Włodarski, Wojciech, 2018. "Experimental investigations and simulations of the microturbine unit with permanent magnet generator," Energy, Elsevier, vol. 158(C), pages 59-71.
    8. Sachdeva, Jatin & Singh, Onkar, 2019. "Thermodynamic analysis of solar powered triple combined Brayton, Rankine and organic Rankine cycle for carbon free power," Renewable Energy, Elsevier, vol. 139(C), pages 765-780.
    9. Ziółkowski, Paweł & Stasiak, Kamil & Amiri, Milad & Mikielewicz, Dariusz, 2023. "Negative carbon dioxide gas power plant integrated with gasification of sewage sludge," Energy, Elsevier, vol. 262(PB).
    10. Guangfang Luo & Jianjun Zhang & Yongheng Rao & Xiaolei Zhu & Yiqiang Guo, 2017. "Coal Supply Chains: A Whole-Process-Based Measurement of Carbon Emissions in a Mining City of China," Energies, MDPI, vol. 10(11), pages 1-18, November.
    11. Krzysztof Pikoń & Piotr Krawczyk & Krzysztof Badyda & Magdalena Bogacka, 2019. "Predictive Analysis of Waste Co-Combustion with Fossil Fuels Using the Life Cycle Assessment (LCA) Methodology," Energies, MDPI, vol. 12(19), pages 1-11, September.
    12. Lombardi, Lidia & Mendecka, Barbara & Carnevale, Ennio & Stanek, Wojciech, 2018. "Environmental impacts of electricity production of micro wind turbines with vertical axis," Renewable Energy, Elsevier, vol. 128(PB), pages 553-564.
    13. Fabio Fatigati & Diego Vittorini & Yaxiong Wang & Jian Song & Christos N. Markides & Roberto Cipollone, 2020. "Design and Operational Control Strategy for Optimum Off-Design Performance of an ORC Plant for Low-Grade Waste Heat Recovery," Energies, MDPI, vol. 13(21), pages 1-23, November.
    14. Nian, Victor, 2016. "Analysis of interconnecting energy systems over a synchronized life cycle," Applied Energy, Elsevier, vol. 165(C), pages 1024-1036.
    15. Włodarski, Wojciech, 2019. "A model development and experimental verification for a vapour microturbine with a permanent magnet synchronous generator," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    16. Guillermo Valencia Ochoa & Jhan Piero Rojas & Jorge Duarte Forero, 2020. "Advance Exergo-Economic Analysis of a Waste Heat Recovery System Using ORC for a Bottoming Natural Gas Engine," Energies, MDPI, vol. 13(1), pages 1-18, January.
    17. Kruk-Gotzman, Sylwia & Ziółkowski, Paweł & Iliev, Iliya & Negreanu, Gabriel-Paul & Badur, Janusz, 2023. "Techno-economic evaluation of combined cycle gas turbine and a diabatic compressed air energy storage integration concept," Energy, Elsevier, vol. 266(C).
    18. Xu, Chi & Kong, Fanli & Yu, Dali & Yu, Jie & Khan, Muhammad Salman, 2021. "Influence of non-ideal gas characteristics on working fluid properties and thermal cycle of space nuclear power generation system," Energy, Elsevier, vol. 222(C).
    19. Abubakr Ayub & Costante M. Invernizzi & Gioele Di Marcoberardino & Paolo Iora & Giampaolo Manzolini, 2020. "Carbon Dioxide Mixtures as Working Fluid for High-Temperature Heat Recovery: A Thermodynamic Comparison with Transcritical Organic Rankine Cycles," Energies, MDPI, vol. 13(15), pages 1-18, August.
    20. Chen, Yuzhu & Hua, Huilian & Wang, Jun & Lund, Peter D., 2021. "Thermodynamic performance analysis and modified thermo-ecological cost optimization of a hybrid district heating system considering energy levels," Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220311798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.