IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v118y2017icp1131-1145.html
   My bibliography  Save this article

A new retrofit approach to the absorption-stabilization process for improving energy efficiency in refineries

Author

Listed:
  • Liu, X.G.
  • He, C.
  • He, C.C.
  • Chen, J.J.
  • Zhang, B.J.
  • Chen, Q.L.

Abstract

In a refining complex, an absorption-stabilization process used in the production of end-use petro-products (i.e. stable gasoline and liquefied petroleum gas) is energy-intensive and costly. A new absorption-stabilization process with a two-stage condensation section is introduced in this work to further improve energy-use performance. In the new process, a condenser, a condensed oil tank, and a side-reboiler are integrated into the original process and then a heat integration scheme is performed. Compared with the existing process, the proposed process can reduce the cold utility and hot utility by 17.98% and 25.65%, respectively, as well as decrease the total annual operating costs of the heat exchanger network by 17.48%. Additionally, the process retrofit reduces the annual operating costs of cooling water and steam by about $346,617 at the expense of capital costs around $487,006, and the corresponding payback period is approximately 17 months.

Suggested Citation

  • Liu, X.G. & He, C. & He, C.C. & Chen, J.J. & Zhang, B.J. & Chen, Q.L., 2017. "A new retrofit approach to the absorption-stabilization process for improving energy efficiency in refineries," Energy, Elsevier, vol. 118(C), pages 1131-1145.
  • Handle: RePEc:eee:energy:v:118:y:2017:i:c:p:1131-1145
    DOI: 10.1016/j.energy.2016.10.128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216315742
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.10.128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Cheng-Liang & Lai, Chieh-Ting & Lee, Jui-Yuan, 2014. "Transshipment model-based linear programming formulation for targeting hybrid power systems with power loss considerations," Energy, Elsevier, vol. 75(C), pages 24-30.
    2. Chen, Q.L. & Yin, Q.H. & Hua, B., 2002. "An exergoeconomic approach for retrofit of fractionating systems," Energy, Elsevier, vol. 27(1), pages 65-75.
    3. Alkan, Mehmet Ali & Keçebaş, Ali & Yamankaradeniz, Nurettin, 2013. "Exergoeconomic analysis of a district heating system for geothermal energy using specific exergy cost method," Energy, Elsevier, vol. 60(C), pages 426-434.
    4. Chen, Q.L. & Yin, Q.H. & Wang, S.P. & Hua, B., 2004. "Energy-use analysis and improvement for delayed coking units," Energy, Elsevier, vol. 29(12), pages 2225-2237.
    5. Chen, Cheng-Liang & Lai, Chieh-Ting & Lee, Jui-Yuan, 2014. "Transshipment model-based MILP (mixed-integer linear programming) formulation for targeting and design of hybrid power systems," Energy, Elsevier, vol. 65(C), pages 550-559.
    6. Liu, K. & Zhang, B.J. & Zhang, Z.L. & Chen, Q.L., 2015. "A new double flash process and heat integration for better energy utilization of toluene disproportionation," Energy, Elsevier, vol. 89(C), pages 168-177.
    7. Feng, Xiao & Pu, Jing & Yang, Junkun & Chu, Khim Hoong, 2011. "Energy recovery in petrochemical complexes through heat integration retrofit analysis," Applied Energy, Elsevier, vol. 88(5), pages 1965-1982, May.
    8. Chen, Ting & Zhang, Bingjian & Chen, Qinglin, 2014. "Heat integration of fractionating systems in para-xylene plants based on column optimization," Energy, Elsevier, vol. 72(C), pages 311-321.
    9. Morosuk, T. & Tsatsaronis, G., 2009. "Advanced exergetic evaluation of refrigeration machines using different working fluids," Energy, Elsevier, vol. 34(12), pages 2248-2258.
    10. Olujić, Ž. & Sun, L. & de Rijke, A. & Jansens, P.J., 2006. "Conceptual design of an internally heat integrated propylene-propane splitter," Energy, Elsevier, vol. 31(15), pages 3083-3096.
    11. Pan, Ming & Bulatov, Igor & Smith, Robin, 2016. "Improving heat recovery in retrofitting heat exchanger networks with heat transfer intensification, pressure drop constraint and fouling mitigation," Applied Energy, Elsevier, vol. 161(C), pages 611-626.
    12. Kelly, S. & Tsatsaronis, G. & Morosuk, T., 2009. "Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts," Energy, Elsevier, vol. 34(3), pages 384-391.
    13. Diakaki, Christina & Grigoroudis, Evangelos & Kolokotsa, Dionyssia, 2013. "Performance study of a multi-objective mathematical programming modelling approach for energy decision-making in buildings," Energy, Elsevier, vol. 59(C), pages 534-542.
    14. Morosuk, Tatiana & Tsatsaronis, George, 2008. "A new approach to the exergy analysis of absorption refrigeration machines," Energy, Elsevier, vol. 33(6), pages 890-907.
    15. Nguyen, Nghi & Demirel, Yaşar, 2010. "Retrofit of distillation columns in biodiesel production plants," Energy, Elsevier, vol. 35(4), pages 1625-1632.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Talaei, Alireza & Oni, Abayomi Olufemi & Ahiduzzaman, Mohammed & Roychaudhuri, Pritam Sankar & Rutherford, Jeff & Kumar, Amit, 2020. "Assessment of the impacts of process-level energy efficiency improvement on greenhouse gas mitigation potential in the petroleum refining sector," Energy, Elsevier, vol. 191(C).
    2. Liu, Siyao & Cui, Chengtian & He, Jie & Sun, Jinsheng, 2018. "Feasibility assessment of a novel refrigeration FCC gas plant driven by self waste heat," Energy, Elsevier, vol. 145(C), pages 356-366.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Zhiqiang & Zhang, Bingjian & Wu, Shengyuan & Chen, Qinglin & Tsatsaronis, George, 2012. "Energy-use analysis and evaluation of distillation systems through avoidable exergy destruction and investment costs," Energy, Elsevier, vol. 42(1), pages 424-433.
    2. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    3. Fallah, M. & Siyahi, H. & Ghiasi, R. Akbarpour & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2016. "Comparison of different gas turbine cycles and advanced exergy analysis of the most effective," Energy, Elsevier, vol. 116(P1), pages 701-715.
    4. Mosaffa, A.H. & Garousi Farshi, L. & Infante Ferreira, C.A. & Rosen, M.A., 2014. "Advanced exergy analysis of an air conditioning system incorporating thermal energy storage," Energy, Elsevier, vol. 77(C), pages 945-952.
    5. Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.
    6. Morosuk, Tatiana & Tsatsaronis, George, 2019. "Advanced exergy-based methods used to understand and improve energy-conversion systems," Energy, Elsevier, vol. 169(C), pages 238-246.
    7. Salehzadeh, A. & Khoshbakhti Saray, R. & JalaliVahid, D., 2013. "Investigating the effect of several thermodynamic parameters on exergy destruction in components of a tri-generation cycle," Energy, Elsevier, vol. 52(C), pages 96-109.
    8. Şöhret, Yasin & Açıkkalp, Emin & Hepbasli, Arif & Karakoc, T. Hikmet, 2015. "Advanced exergy analysis of an aircraft gas turbine engine: Splitting exergy destructions into parts," Energy, Elsevier, vol. 90(P2), pages 1219-1228.
    9. Keçebaş, Ali & Gökgedik, Harun, 2015. "Thermodynamic evaluation of a geothermal power plant for advanced exergy analysis," Energy, Elsevier, vol. 88(C), pages 746-755.
    10. Balli, Ozgur, 2017. "Advanced exergy analyses of an aircraft turboprop engine (TPE)," Energy, Elsevier, vol. 124(C), pages 599-612.
    11. Khoshgoftar Manesh, M.H. & Navid, P. & Blanco Marigorta, A.M. & Amidpour, M. & Hamedi, M.H., 2013. "New procedure for optimal design and evaluation of cogeneration system based on advanced exergoeconomic and exergoenvironmental analyses," Energy, Elsevier, vol. 59(C), pages 314-333.
    12. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Advanced exergy analysis of an oil shale retorting process," Applied Energy, Elsevier, vol. 165(C), pages 405-415.
    13. Wu, Junnian & Wang, Na, 2020. "Exploring avoidable carbon emissions by reducing exergy destruction based on advanced exergy analysis: A case study," Energy, Elsevier, vol. 206(C).
    14. Li, Longquan & Liu, Zhiqiang & Deng, Chengwei & Ren, Jingzheng & Ji, Feng & Sun, Yi & Xiao, Zhenyu & Yang, Sheng, 2021. "Conventional and advanced exergy analyses of a vehicular proton exchange membrane fuel cell power system," Energy, Elsevier, vol. 222(C).
    15. Balli, Ozgur & Aygun, Hakan & Turan, Onder, 2022. "Enhanced dynamic exergy analysis of a micro-jet (μ-jet) engine at various modes," Energy, Elsevier, vol. 239(PA).
    16. Morosuk, T. & Tsatsaronis, G., 2011. "Comparative evaluation of LNG – based cogeneration systems using advanced exergetic analysis," Energy, Elsevier, vol. 36(6), pages 3771-3778.
    17. Mortazavi, Arsham & Ameri, Mehran, 2018. "Conventional and advanced exergy analysis of solar flat plate air collectors," Energy, Elsevier, vol. 142(C), pages 277-288.
    18. Soltani, S. & Yari, M. & Mahmoudi, S.M.S. & Morosuk, T. & Rosen, M.A., 2013. "Advanced exergy analysis applied to an externally-fired combined-cycle power plant integrated with a biomass gasification unit," Energy, Elsevier, vol. 59(C), pages 775-780.
    19. Stanek, Wojciech & Gazda, Wiesław, 2014. "Exergo-ecological evaluation of adsorption chiller system," Energy, Elsevier, vol. 76(C), pages 42-48.
    20. Gebreslassie, Berhane H. & Medrano, Marc & Boer, Dieter, 2010. "Exergy analysis of multi-effect water–LiBr absorption systems: From half to triple effect," Renewable Energy, Elsevier, vol. 35(8), pages 1773-1782.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:118:y:2017:i:c:p:1131-1145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.